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Chapter 1

Introduction

Quantum information processing is one of the most thrilling prospects to emerge from the interaction
of physics and computer science. In recent decades, scientists have transitioned from merely observing
microscopic systems to actually controlling those same systems on the scale of individual quanta, and the
future of information processing based on these techniques will revolutionize the computing industry. This
paper will explain one exciting candidate realization of this means of computing, the superconducting
“transmon” qubit.

Why quantum computers?

Quantum computers leverage the quantum phenomena of superposition and entanglement, which to-
gether allow for massively parallel operations in an exponentially enlarged computational space [1].
Several famous algorithms have been proposed to capitalize on these advantages. For instance, the Shor
factoring method is exponentially faster than known classical algorithms at solving a problem whose
difficulty underlies much of modern cryptography, and the Grover search method provides a square-
root speed-up to the ubiquitous procedure of (unsorted) database searching. While these algorithms
will impact matters ranging from general computing to information security, the most important use
of quantum computers may actually be the simulation of other complex quantum systems [2]. Modern
research, in subjects ranging from medicinal drug discovery to high-temperature superconductivity, re-
quires simulating systems which classical computers are inherently inefficient at modeling. These fields
stand to benefit greatly from the quantum computational power boost.

The qubit

Many schemes [1] have been proposed to implement the quantum bit (“qubit”) of such a computer,
most commonly relying on microscopic quantum systems such as nuclear or electronic spins, photon
polarizations, or electronic levels in trapped ions or in crystal defects. One approach, however, utilizes
the macroscopic quantum phenomena of superconductivity. This brings about two major advantages.
First, these systems–unlike an atom which is fixed by nature–can be engineered to desirable specifications.
Second, due to their size, they can be built via the familiar, scalable micro-fabrication methods of the
conventional semiconductor industry, which is vital if these qubits are to be manufactured into arbitrarily
large computers. The Achilles heel of superconducting qubits has always been short coherence times–the
coherence time is essentially how long the system shows coherent quantum behaviour, before damping
and dephasing drain the information away. Because of their macroscopic size, superconducting circuits
couple strongly to their surroundings in comparison to well-isolated microscopic systems. Although this
once presented a seemingly unsurmountable obstacle, researchers have steadily discovered and eliminated
more sources of noise with remarkably clever designs, and qubit coherence times have lengthened by
several orders of magnitude [3] within the last decade, making superconducting systems an increasingly
promising choice of qubit.

A qubit must simultaneously satisfy a difficult set of constraints in order to have any utility. It must
stay coherent (on its own or more likely with error correction) on a timescale long enough to apply
computations. Thus it cannot couple too much to the environment, but it must couple strongly to a
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classical system in some controllable way, so that it can be manipulated quickly. To make a computer, it
also has be to be possible to address only the qubit transition between whichever levels store information,
without exciting other levels. A harmonic oscillator, for instance, would not work because all levels are
uniformly spaced, so a pulse which excites the first transition would also excite the second (and third
and any others). It also has to be possible to controllably entangle multiple qubits together in order to
perform any non-trivial computation.

The transmon

Acheiving these criteria in a variety of systems has been a tremendous scientific effort, and only in the
last several years have superconducting systems become plausible competitors. First proposed in 2007
[4], the transmon and its descendants are a leading architecture for superconducting qubits, with exper-
imental coherence times of ∼ 100µs[3], demonstrated multiqubit entanglement [5, 6], and a transmission
line structure which naturally lends itself to incorporation with various interesting Circuit Quantum
Electrodynamics (CQED) proposals, e.g. [7]. This paper will discuss the physical elements involved in
the design of a transmon qubit, from its basis in the capacitively shunted Cooper Pair Box, to the tech-
niques of coupling with a transmission line resonator, to protocols for performing quantum operations
upon the system. The first two chapters will rationalize the architecture of the system, and the third
will discuss how such a design can be used to implement computation.

Assumptions of the Reader

This work assumes that the reader has a prior background in superconductivity and Josephson phenom-
ena, on the level of an introductory text such as [8].

3



Chapter 2

Qubit Architecture

The transmon is a cleverly optimized architecture which simultaneously balances many of the mentioned
requirements for successful qubit. Since the transmon is built up from a modified version of the concep-
tually simpler “Cooper Pair Box” qubit, our discussion will begin there and then steadily add the new
features, a capacitive shunt and a coupled transmission line, until the entire design has been rationalized.

2.1 Cooper Pair Box

The Cooper Pair Box (CPB) is the prototypical “charge” qubit–that is, a qubit wherein the charge degree
of freedom is used for couping and interaction. Coherent quantum oscillations were first demonstrated in
this system in the late 90’s [9, 10]. In its most basic form, the CPB consists of a superconducting island
into which Cooper pairs may tunnel via a Josephson junction. Such a structure is shown in Figure 2.1a.
In order to apply the quantum theory of circuits and understand how such a structure can demonstrate
quantum coherence, the structure of Figure 2.1a can be translated into the schematic shown in Figure
2.1b, which is formally treated below.

(a) (b)

Figure 2.1: (a) A prototypical implementation of the Cooper Pair Box, containing a superconducting
“island” which is electrically connected to the rest of the circuit only by a Josephson tunneling current.
The light grey material is a superconductor (e.g. Aluminum) and the dark junction an insulator (e.g.
Aluminum Oxide). Reprinted from [11]. (b) Translation into a circuit schematic, where the crossed box
symbolizes a Josephson junction. The superconducting island has been highlighted red.

2.1.1 Classical Hamiltonian

The Hamiltonian for this circuit is derived in Appendix A.1 under a standard classical procedure.

H =
(QJ − CgVg)2

2CΣ
− EJ cos δ

where CΣ = Cg + Cj is the total capacitance of the island, QJ is the charge in the island, and δ is the
superconducting phase across the junction.
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The first term of the Hamiltonian represents the capacitive/charging energy and the second term is
the Josephson inductive energy. Note that the charging term depends on the excess charge minus an
offset which is controlled by the gate voltage.

We will rewrite this expression by naming several useful quantities. The charging energy scale is set
by EC = e2/2CΣ (many authors differ in a factor of four, but this convention seems to dominate within
the transmon literature). And we rephrase the charge variable in terms of n = Qj/(2e), the number of
Cooper pairs inside the island:

H = 4EC (n− ng)2 − EJ cos δ

where ng = CΣVg/(2e) is called the effective offset charge. This form of the Hamiltonian, which highlights
the relevant energy scales in the problem, will be used throughout the paper.

Split Junction

In practice [10], the schematic is only slightly more complex that what we have just treated: the qubit
is typically implemented with split Cooper Pair Box. Two parallel junctions replace the single junction,
as shown schematically in Figure 2.2. However, it can be shown that this pair merely creates an effective
single junction, for which the Josephson energy can be tuned in situ by putting the magnetic flux through
the pair [11]. This is vital for two reasons. First, it implies that the Hamiltonian which we derived for
the prototypical CPB also applies to the split-CPB system. And second, the ability to tune the qubit
parameters (and thus its frequency) will be useful for implementing quantum gates in Sec 3.

Figure 2.2: The split pair forms an effective junction whose Josephson Energy EJ can be tuned by
application of an external flux Φ from a bias line.

2.1.2 Quantized Hamiltonian

Quantization at the sweet spot

We will now quantize the CPB circuit with the commutation relation [n, δ] = i, as described in Appendix
B, and write the Hamiltonian in a familiar form. When the energy scale for the capacitive charging of
the island is dominant (i.e. EC � EJ), the natural choice of basis states for the system, {|n〉}, is labelled
by the number of excess Cooper pairs in the island. Since the CPB is generally operated in regime–hence
the name “charge qubit”–much intuition can be gleaned by working in the basis of charge eigenstates
(as introduced in Appendix B).

Using (B.1), we quantize in this basis:

H = 4Ec(n− ng)2 |n〉 〈n| − EJ
2

(∑
n

|n+ 1〉 〈n|+ |n− 1〉 〈n|

)

Now, how can we get a single pair of qubit levels well-separated from the others? The CPB is typically
biased at the “sweet spot” such that ng ≈ 1/2: this makes the charging term degenerate with respect to
the states {|0〉 , |1〉}, and that degeneracy is broken by the Josephson term. With EC � EJ , other levels
will be far separated (order of EC) and we can focus on those two states as our qubit. If ng = 1/2, then
H is off-diagonal, so the eigenstates would be |±〉 = 1√

2
(|0〉 ± |1〉), with a splitting of EJ .
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Rotating into this |±〉 basis, the Hamiltonian acting upon this subspace can be rewritten in a familiar
form using the Pauli matrices [12]:

H = EzσZ +XσX (2.1)

where Ez = EJ/2, and X = 4EC(ng − 1
2 ). This form lets us view the system in analogy to the standard

NMR Hamiltonian.

How to control and readout

The NMR Hamiltonian is a frequently used picture for quantum computation. Note that X in Eq 2.1 is
controlled by the gate voltage Vg, and that oscillating the parameterX of a CPB system is mathematically
analogous to sending a transverse pulse of magnetic field to an NMR nucleus. Thus by supplying an
oscillating gate voltage about the sweet spot, one can apply the σx gate to a CPB qubit. And by simply
waiting (or, in the rotating-frame picture, adjusting the phase of the pulse programmer) one applies a
σz gate.

Readout could be performed by rotating the system to a charge basis and then classically measuring
the charge in the island, via, for instance, a single-electron transistor [9, 10]. Alternative methods include
measurement via quantum capacitance [13], or resonator-based readout [14]. The last option is the one
which will be important to this work, so further discussion of qubit control and readout will be come
after the discussion of resonator coupling with Circuit QED.

Energy Spectrum

While the charge basis gave us an intuitive picture of the qubit eigenstates of the CPB Hamiltonian, it is
also worth mentioning that the full set of energies can be solved for exactly in the phase representation
(again see Appendix B). In this representation, the Hamiltonian becomes

H = 4EC

(
−i ∂
∂δ
− ng

)2

− EJ cos δ

Note that this is the same form as the effective Schrodinger equation which is solved to find the energy
eigenstates of a particle an a periodic potential, with ng taking the role of the Bloch wavevector (see
Appendix C.1), so it is no surprise that the resulting energy spectrum, when plotted as a function of ng,
looks like a band structure. In this particular case–a cosine potential–the solution is known in terms of
the Mathieu functions: the full energy spectrum is given by

Ek = 4EC ×MA[(k + 1)%2 + 2(−1)kng,−2EJ/EC ]

where x%2 indicates the remainder when x is divided by 2, and MA(r, q) is the characteristic value
for even Mathieu functions with characteristic exponent r and parameter q, see [12]. The energies are
plotted in Figure 2.3a for the EC � EJ case discussed.

One feature worth note in the spectrum is that the energy levels for the charge qubit are strongly
dependent on the offset charge ng, which makes the qubit dangerously sensitive to charge noise from the
environment: low-frequency charge fluctuations (the ubiquitous “1/f noise”) will perturb the transition
frequency and whittle away phase coherence of the qubit. This noise sensitivity is reduced by operating
at the “sweet spot” ng = 1/2 where the energy is first-order independent of offset charge [15]. Intuitively,
the levels at the sweet spot are both equal superpositions of the two charge eigenstates, so first-order
perturbation theory won’t distinguish the two. But even with this intelligent biasing, charge noise is still
a dominant decoherence mechanism [4].

However, note that in Figure 2.3b, where EJ/EC has been increased such that the charging term no
longer dominates, the charge sensitivity of the qubit is intuitively diminished. The trade-offs involved in
this suggestive option will be discussed in the next section, leading us to a simple redesign of the qubit.
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Figure 2.3: Energy levels for the CPB as a function of the effective offset charge. In (a), where EC is
sufficiently greater than EJ , there is a sweet spot such that the bottom two levels form a well-isolated
qubit with basis states {|±〉}. (b) Where EC ∼ EJ , charge and flux degrees of freedom are both
important. Reprinted from [15].

2.2 Capacitively-shunted CPB

This section will more thoroughly explore the benefits of moving beyond the charge qubit into a regime
of high EJ/EC , by capacitively shunting the Cooper Pair Box. The first order of business is to continue
the discussion from the previous section to more rigorously examine how the properties of the qubit
depend on this ratio.

2.2.1 The ratio EJ/Ec

In the discussion thus far, we have taken EC to dominate over EJ , as is appropriate for a charge
qubit. However, the (exact) energy spectrum given in the previous section does not depend on any such
approximation, and this solution raises a trade-off to be considered for the parameter EJ/EC . The choice
of this ratio affects both the device’s anharmonicity and its sensitivity to charge noise.

As discussed, the low EJ/EC limit creates a spectrum like that in Figure 2.3a, which is highly
dependent on the value of ng, and thus susceptible to enivronmental charge noise. To combat charge
noise, one would consider raising the ratio to reduce the influence of the charging term. This produces
what is known as a charge-flux qubit.

But a low EJ/EC is what provides high anharmonicity. As discussed in the charge basis, this regime
gives rise to a spectrum in which the energy depends quadratically on the quantum number n. This
quadratic dependence means that the energy difference between the first and second levels is much
tighter than that between the second and third, and so on up the ladder; this can be seen in Figure 2.3a.
Since these two transitions have different frequencies, they can be selectively addressed by pulses. But if
EJ/EC were large, as in Figure 2.3b, then the Hamiltonian begins to approach a harmonic oscillator (this
will be shown below), and the energy levels adjust toward a relatively uniform spacing, and eventually
will not be selectively addressable. So the requirement of anharmonicity favors the purely charge qubit
we’ve discussed.

So the necessity of anharmonicity biases the experimenter toward low EJ/EC , but the desire to lower
charge noise suggests high EJ/EC . We will therefore examine how each property depends on this vital
ratio, following [4], so as to determine whether some middle ground exists.

Anharmonicity

As EJ/EC is raised, the cos δ term dominates, and, falling back upon the picture of a particle in a periodic
potential (see Appendix C.1), the atomic wells become increasingly deep and the states localized within
each well become increasingly decoupled from one another. The energies will thus depend on the shape
of the potential only near the bottom of the well at δ = 0, where cos δ ≈ 1− δ2/2 +O(δ4). So, for large
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EJ/EC , the anharmonicity comes entirely from the higher-order terms in cos δ, and the problem reduces
to perturbing a harmonic oscillator. This is analyzed in depth in Appendix C, and the result is that the
anharmonicity, quantified as the relative difference between the first two transition frequencies, falls off
with a simple algebraic dependence on EJ/EC :

E12 − E01

E01
≈ − (8EJ/EC)

−1/2

Charge dispersion

On the other hand, the dependence of the levels on ng, the “charge dispersion,” does not arise from a
simple perturbation of the harmonic oscillator. We can argue that this property actually depends on the
height of the potential far from the high-amplitude region of the wavefunction.

Again considering the periodic potential analogy of Appendix C.1, the case of deep, decoupled wells is
addressed by the tight-binding model of band theory. In tight-binding, the energy levels of an individual
well are assumed to be known, but the coupling between neighboring wells pertubs this by the addition
of tunnelling matrix elements, which create the bandstructure. Tunneling is, as usual, exponentially
suppressed by the height of the potential barrier in between the wells, where the wavefunction is small.

Translating back to the CPB, the “band structure” is ng dependence, and the “potential barrier
height” is determined by EJ/EC . So, in high barriers, the effects of the band structure, and thus any
dependence on ng, are exponentially suppressed by large EJ/EC . This fact is the key to understand-
ing why the a higher EJ/EC is desirable: the charge dispersion decays exponentially fast, while the
anharmonicity, preserved by the higher-order terms of the cosine, only slowly decreases.

Shunting the CPB

From the Section 2.1.1, recall that the charging energy EC is inversely related to the junction capacitance.
The standard way to increase EJ/EC is thus to add a large “shunt” capacitance across the Josephson
junction (as shown in Figure 2.4). Since CB adds in parallel with CJ , but is much larger, CJ can just
be absorbed into CB to simplify the algebra. This reduces the Hamiltonian of the new circuit back to
the CPB Hamiltonian but with CJ → CB , so all of the previous discussion holds. In practice with such
a qubit, EC might be in the hundreds of MHz and EJ in the tens of GHz [5, 6].1

Figure 2.4: A large capacitor is added across the junction to reduce EC .

The first question to address for this modification must be how to couple to such a qubit for control
and readout. The electrostatic charge-based methods mentioned in Section 2.1.2 will not be effective for
our modified qubit, whose Hamiltonian is no longer dominated by charging energy. But the next section
will rescue the new design by exploring the physics of resonator-based based readout alternative for this
capacitively shunted CPB, which is the last ingredient to making a transmon qubit.

1Note: as discussed, EJ is a tunable parameter for the split Josephson junction, so both of [5, 6] list the value as Emax
J .
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Chapter 3

Circuit QED

We previously discussed means of coupling directly to a CPB qubit using its charge degree of freedom
for control and readout. However this section will introduce an indirect means of interacting with the
qubit: coupling the circuit to a transmission line resonator and interacting only with the resonator itself.
The scheme is often referred to as Circuit Quantum Electrodynamics (Circuit QED), analogous to the
study of confined atom-light interactions in Cavity QED.

The advantages of this approach are many-fold. First, it will provide a controllably isolated environ-
ment for the qubit, inhibiting spontaneous decay by a means similar to the Purcell effect in Cavity QED.
Second, it will allow non-destructive measurements (i.e. measurements which do not reset the qubit).
And third, it will suggest a simple way to couple multiple qubits together. All of these will be discussed
in depth once we have built up a Cavity QED framework for the physics.

3.1 Vocabulary of Cavity QED

Cavity QED describes the interactions between atoms and quantized electromagnetic fields in a cavity;
as this is already a rich research field, the literature of Circuit QED has adopted much of its preexisting
jargon and intuition [16]. This section will introduce the basic language of Cavity QED and clarify the
analogy with its superconducting circuit manifestation.

Figure 3.1: As an atom passes through the cavity, it couples (with strength g) to the electromagnetic
fields of a nearby cavity mode. Near resonance, this interaction can be intuited as absorbing photons to
excite them atom and reemitting photons to deexcite the atom. Also depicted are losses from interaction
with other modes (γ) and from imperfect cavities (κ). These losses will be neglected for the moment.
Modified from [16].
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3.1.1 Jaynes-Cummings Hamiltonian

The prototypical system of Cavity QED is the coupling between an atom and a cavity when an atomic
transition frequency is near a cavity mode. Here we will “derive by declaration” the Jaynes-Cummings
Hamiltonian modeling this interaction. A more rigorous derivation of this standard Hamiltonian can be
found in many sources [17], but our purpose here is mainly to build up an analogy for Circuit QED,
wherein we will derive a similar Hamiltonian by a more thorough circuit analysis.

The coupling depicted in Figure 3.1 is between an atomic transition of frequency Ω and a single
mode of the cavity at frequency ωr. The atom is approximated by a two-level system {|g〉 , |e〉} and
enters the Hamiltonian through the Pauli matrices Hatom = ~Ω

2 σz. The cavity mode is described by
a harmonic oscillator with ladder operators a and a†, so it appears in the Hamiltonian via a number
operator Hcavity = ~ω(a†a+ 1

2 ).
Finally, the atomic dipole moment couples with the electric fields of the cavity mode. The electric

field is analogous to the position operator of the harmonic oscillator, so it is proportional to Erms(a+a†),
where Erms is the root-mean-square electric field of a single cavity photon. The dipole moment D of the
atom is off-diagonal in the Pauli basis since atomic energy eigenstates themselves have no dipole moments;
thus D = dσx = d(σ+ +σ−) where d = |〈g|D|e〉|. The interaction is then Hint = Ermsd(a+a†)(σ+ +σ−).
Using the rotating wave approximation [17] to eliminate the quickly oscillating terms, and collecting the
prefactors into a “couping strength” g = Ermsd/~, we have Hint = ~g(aσ+ + a†σ−). Putting this all
together we have the classic Jaynes-Cummings Hamiltonian:

HJC =
~Ω

2
σz + ~ω(a†a+

1

2
) + ~g(aσ+ + a†σ−)

This Hamiltonian will describe the dynamics well if the losses we’ve neglected (see Figure 3.1) are
negligible, that is, the other cavity modes are far detuned from the atomic transition and the leakage of
the cavity is small. This regime g � κ, γ is known as “strong coupling.”

To set the scales and get a sense for the difficulty of strong coupling [16], Cavity QED is generally
implemented [18] with optical transitions (e.g. 350THz in Cesium) or microwave transitions (e.g. 51GHz
in highly excited “Rydberg” atoms), and the dipole moment is fixed by the atom (so about one ea0 or
up to about 103 ea0, respectively). The resulting values of g are 110× 2πMHz or 24× 2πkHz. What is
important to note is that the timescale 2π/g for coupling effects is longer than the transition timescale
by a factor of more than a million. So in order to see coherent effects of the atom-cavity interaction, the
cavities must be extremely high quality (Q ∼ 107, 108). With these limits, a typical cavity lifetime is
only a few times longer than the coupling timescale (at least for low photon numbers). So, in order to
see coherent behavior at the single photon scale, Cavity QED has little margin for imperfections.

3.1.2 Effects of the coupling: resonant and dispersive limits

Diagonalizing the above Jaynes-Cummings Hamiltonian yields a set of “dressed state” solutions which
mix the atomic eigenstates with the cavity eigenstates. The ground state is |g, 0〉, that is, an unexcited
atom in an empty cavity. The excited states are, following [16]:

|+, n〉 = + cos θn |e, n〉+ sin θn |g, n+ 1〉

|−, n〉 = − sin θn |e, n〉+ cos θn |g, n+ 1〉

with the mixing angle θn

θn =
1

2
tan−1

(
2g
√
n+ 1

∆

)
where ∆ is the detuning Ω− ωr. And the energies are given by

E±,n = (n+ 1)~ωr ±
~
w

√
4g2(n+ 1) + ∆2, Eg,0 = −~∆

2

There is much intuition to be gained by examining the limiting cases of ∆. If ∆� g, that is, the atom
is resonant with the cavity, then photon absorption and emission are energy-conserving. Mathematically,
θn = π/4, and the eigenstates are equal combinations of excited atoms with n photons and de-excited
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Figure 3.2: Levels of the Jaynes-Cummings Hamiltonian in the resonant and dispersive limits. (a) On
resonance, the spectrum can be view as a set of dressed-state doublets split by the coupling. (b) Detuned
from resonance where the unperturbed eigenstates are approximately valid, the coupling effectively just
shifts the cavity frequency in a manner dependent on the atom’s state. Reprinted from [16].

atoms with n+ 1 photons. The spectrum is a set of doublets which are split by the coupling energy, as
shown in Figure 3.2a.

Specifically, an excited atom is not an eigenstate of the combined system: if an initially excited atom
is placed into an initially empty cavity, the system is in an equal superposition of the states in the lowest
doublet in Figure 3.2(a), and will oscillate with characteristic frequency 2g between |e, 0〉 and |g, 1〉. That
is, the excitation coherently transfers back and forth between the atom and the electromagnetic modes
of the cavity. This process is known as “Rabi flopping” (and 2g is the “Rabi frequency”).

On the other hand, if ∆� g, which is known as the dispersive regime, then the eigenstates are nearly
those of the unperturbed Hamiltonian:

|+, n〉 ≈ |e, n〉+
g
√
n+ 1

∆
|g, n+ 1〉

|−, n〉 ≈ |g, n+ 1〉 − g
√
n+ 1

∆
|e, n〉

In this limit, we can adiabatically eliminate [19] the coupling, via the unitary U = exp
[
g
∆ (aσ+ + a†δ−)

]
.

The effective Hamiltonian becomes (to second-order in g/∆)

UHU† ≈ ~ωra†a+
~
2

[
Ω + 2

g2

∆

(
a†a+

1

2

)]
σz (3.1)

= ~
[
ωr +

g2

∆
σz

]
a†a+

~
2

[
Ω +

g2

∆

]
σz

This Hamiltonian is written in two different ways to emphasis two interpretations. The first form
is familiar from atomic physics, and can be viewed as a photon-number-dependent shift of the atomic
frequency (a Stark/Lamb shift). The second form, which will be more useful to us, combines the Stark
term with the cavity frequency to view this coupling as a shift of the cavity frequency by an amount
dependent on the atomic state. That is, if the atom is in |e〉, then the cavity frequency is ωr + g2/∆; if
the atom is in |g〉, then the cavity frequency is ωr − g2/∆. This dispersive limit can be seen in Figure
3.2b.

3.1.3 Purcell Effect

Spontaneous emission, the eventual decay of any excited energy level in an atom, is often taken as an
essential feature of light-matter interaction, endowing atomic levels with “natural” linewidths and decay
rates. But, as the above discussion shows, the presence of a cavity fundamentally changes the interaction
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between an atom and the electromagnetic fields by quantizing the modes available for coupling. If a cavity
is resonant with the atom, then the atom can emit and reabsorb photons coherently. Alternatively, if the
atom is far detuned from any cavity mode, it’s eigenstates are very nearly the eigenstates of the system.

The rate at which an atomic level decays is proportional (by Fermi’s golden rule) to the density of
states of the local electromagnetic field at that atomic frequency. But the mode quantization enforced
by a cavity redefines the density of states available to the atom, increasing it in the case of resonance
or diminishing it in the case of far detuning. By this channel, the cavity can enhance or reduce the
spontaneous emission rate of an atom [20, 21] in what is known as the Purcell effect.

The notion that the cavity shapes the local electromagnetic environment, and thus the lifetime of
the atomic excitations, is very suggestive for our mission of building qubits with long-lasting coherent
excitations. We will now consider how to realize this, and the other Cavity QED features discussed, in
a superconducting system.

3.2 Translating into Circuit QED

In the simplest Circuit QED approach (hereafter CQED), the cavity is replaced by a 1-D transmission line
resonator and the atom is, not surprisingly, replaced by superconducting qubit, as shown in Figure 3.3.
With this addition, we have reached our objective: the capacitively shunted Cooper Pair Box embedded
in a transmission line resonator is known as a transmon qubit. Although we will work off the analogy of
the previous section there are several quantitative differences to discuss first.

Figure 3.3: Circuit QED uses a transmission line “cavity” and a superconducting qubit as the “artificial
atom.” The resonator is formed by the capacitive gaps in the center trace of the transmission line, and
the outer two traces are ground. Here the qubit is placed at the middle of the resonator to couple to the
strong electric fields at the antinode of the second mode. Reprinted from [16].

3.2.1 Why Circuit QED is easier than Cavity QED

As before, the coupling is between the electric fields of the cavity and the dipole moment of the “artificial
atom” [16], which has a transition tuned to a few GHz. However, since the “atom” is now macroscopic,
its dipole moment (which essentially corresponds to moving one Cooper pair across a qubit of dimensions
in the microns) is four orders of magnitude greater than that of an optical transition, or about twenty
times greater than that of a Rydberg atom. Furthermore, a 1-D resonator (with a width of ∼10 microns,
as shown in Figure 3.3) offers a much smaller volume of confinement for electromagnetic fields (on the
order of 10−5 cubic wavelengths) than do 3-D cavities. This increases the root-mean-square electric field
strength that corresponds to a single quanta by about two orders of magnitude versus 3-D microwave
cavities.

Together these advantages give CQED systems high Rabi frequencies (about 100MHz) comparable to
those of optical atom implementations, but with low transition frequencies (say 10GHz) comparable to
those of microwave atom implementations. Since the coupling time scale is only about a hundred times
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the cavity frequency, the exceedingly high-finesse resonators used for Cavity QED are not necessary. In
fact, although transmission line resonators have been demonstrated with Q ∼ 106 [16], researchers often
opt for lower quality cavities to increase measurement speed, e.g. [5, 14].

3.2.2 Circuit QED Hamiltonian

Near the resonant frequency of the transmission line, we can model the line as a lumped LC circuit [14,
16]. In this model, the effective circuit corresponding to Figure 3.3 is given by the schematic in Figure
3.4.

Figure 3.4: Effective circuit for the Transmon.

Using the lumped LC model for the microwave component of the gate voltage Vg, the Hamiltonian
of the above circuit is found in Appendix A.2:

H =
φ2
r

2Lr
+

Q2
r

2Cr

+

(
QJ − CgV DC

g

)2
2CΣ

− EJ cos

(
2π

~
φJ

)
+ β

QrQj
Cr

+
CinQrVg
Cr

The first line describes the resonator, the second line describes the CPB, and the third line describes the
couplings resonator-to-qubit and resonator-to-gate. The parameter β = Cg/CΣ is the voltage divider
ratio determining how much of the resonator voltage is seen by the qubit, and V DC

g is the biasing.
To quantize this Hamiltonian and find the Jaynes-Cummings interaction, we rewrite the resonator

part with harmonic oscillator ladder operators a and a†, and simplify by defining V 0
rms =

√
~ωr/2Cr, the

root-mean-square voltage of a single photon in the resonator. For the CPB terms, we assume that the
qubit is biased at the sweet spot, restrict to the qubit space, and write the Hamiltonian with the Pauli
operators, defined as acting in the qubit eigenbasis. Disregarding the resonator-gate coupling for now,
the resonator and qubit Hamiltonian becomes

H = ~ωr
(
a†a+

1

2

)
+
EJ
2
σz − 2eβV 0

rms

(
a+ a†

)
n

The last term is a dipole coupling between the voltage in the resonator and the charge on the qubit.
And, as in Cavity QED, the diagonal elements of n vanish (see Appendix C), so we can rewrite this
coupling factor in terms of the off-diagonal elements, and employ the rotating-wave approximation to
find a Jaynes-Cummings type Hamiltonian:

H = ~ωr
(
a†a+

1

2

)
+

~Ω

2
σz − ~g

(
a†σ− + aσ+

)
(3.2)

where the frequency scales are set by the resonator frequency ωr, the qubit transition Ω = EJ , and the
coupling strength g = (2eβV 0

rms/~) 〈e|n|g〉. Note that for the charge-qubit, the matrix element 〈e|n|g〉
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between sweet-spot energy eigenstates is just 1/2, which reduces the above Hamiltonian to the expressions
in [14, 16].

Transmon coupling strength

The matrix elements of n are evaluated in Appendix C, and it is important to register that the coupling
strength

g =
(
2eβV 0

rms/~
)( EJ

8EC

)1/4

increases slightly with EJ/EC . In practice, with EJ/EC of the order 102, this increase is not large,
within an order of magnitude, but the point is only that the coupling strength is not suppressed by
the capacitive shunting. At first glance, this may seem to contradict the most important result of the
previous section, that the charge noise sensitivity of capacitively shunted qubit decreases exponentially
with EJ/EC , so the transmon should not couple strongly to environmental fields. However, that result
was drawn only from considerations of the charge dispersion of the static energy levels; it thus dictates
the sensitivity of the qubit to DC charge offsets. That is to say, that noise suppression only describes
the response of the qubit to fluctions of low enough frequency to be considered adiabatic.

So, whereas the last chapter showed that the transmon would be insensitive to 1/f charge noise,
this new result shows the transmon is also more sensitive than the charge qubit to drives near its
resonant frequency. This combination is necessary and ideal if the transmon is to serve as a qubit,
but where did this boost in coupling strength come from? While the qubit eigenstates of the CPB
only involved superpositions of n = 0 and n = 1, limiting the n̂ matrix element to 1/2, the transmon
eigenstates, due to the increased importance of the flux term, will sample a greater range of the charge
eigenbasis. Consequently, the transmon is more polarizable, that is, 〈e|n̂|g〉 involves sums over higher
charge eigenvalues than just n = 0 and n = 1.

Dispersive region with the transmon

As in Cavity QED, the superconducting CQED system can be operated in a dispersive regime wherein
the resonator and the qubit are far-detuned, and each effectively just shifts the frequency of the other.
With a highly anharmonic CPB qubit, the math is essentially the same as for the Cavity QED dispersive
regime. With the more harmonic transmon, however, the second transition also appears in the effective
Hamiltonian at the same order [4].

Heff = ~
[
ωr −

g2

2∆2
+

(
g2

∆1
− g2

2∆2

)
σz

]
a†a+

~
2

[
Ω +

g2

∆

]
σz

where the ∆i represent detunings from the first and second transitions. While this can leads to some
unusal physics in certain parameter ranges, with dispersive shifts of atypical signs, the end result doesn’t
change the measurement and control procedures, so, for our purposes, we simply define the dispersive
shift χ = g2/∆1 − g2/2∆2, and consider the new cavity frequency ω′r to be renormalized by a g2/2∆2

term. The Hamiltonian is then

Heff = ~ [ω′r + χσz] a
†a+

~
2

[
Ω +

g2

∆

]
σz (3.3)

There are two main advantages to working in this region. First, the control pulses sent at the qubit
frequency will be off-resonant from the transmission line, so the high quality factor of the line does not
limit the speed of applying control pulses [14]. Or, alternatively, if a lower quality resonator is used,
working in the dispersive regime is necessary because information which flops onto the cavity photons
will leak away into the environment [5]. Second, the Purcell effect works in our favor, since the resonator
should suppress the local electromagnetic density of states at the detuned qubit frequency, thus inhibiting
excited state decay [14].

Now that we have all of the elements of a transmon qubit, the language to describe its interactions
with the resonator, and a sense of the rationale for the design and the typical operating regime, what
can we do with it?
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Chapter 4

Control and Readout Protocol

The preceeding two chapters have built up all of the physics necessary to discuss how one can manipulate
quantum information using a transmon qubit. Now we will explore the actual protocols for implementing
this: how to measure the qubit state, how to control it, and how to entangle multiple qubits together.

4.1 Measurement

Refencing Eq 3.3, the dispersive shift of the resonator frequency dependent on the qubit state provides
a natural means of measuring the qubit, by probing the cavity. The two possible transmission profiles
are juxtaposed in Figure 4.1, and this contrast suggests two ways that the qubit could be read out.

Figure 4.1: The transmission profile of the resonator is shifted to one of two peaks (red or blue) condi-
tioned on the states of the qubit. For drives near ω′r±χ, the information of the qubit state gets encoded
into the transmission probability, and for drives near ω′r, the state gets encoded into the phase shift of
the transmitted/reflected photons. Modified from [14].

The most obvious means would be to send a pulse at one of ω′r ± χ. The transmission will be near
unity or near zero depending on which energy eigenstate the qubit collapses into. Alternatively, one
could send a pulse at the “bare frequency” ω′r and measure the phase shift of the reflected or transmitted
components. As shown in Figure 4.1, the possible phase shifts differ by π, again depending on the qubit
state.

The key property of these measurement schemes is that both are valid Quantum Non-Demolition
(QND) measurements [14]. That is to say, the measurement collapses the qubit into some basis state,
but thereafter the qubit remains in this state (for times shorter than the excited state decay rate). This
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is in contrast to, say, measuring the polarization of a photon, afterwhich the photon has been consumed.
This superconducting qubit can be measured again immediately afterwards, and the result should be the
same.

4.2 Single qubit gates

Whereas driving within χ of the resonator frequency ω′r results in a measurement, driving at a frequency
ωd far from ω′r does not leak information about the qubit. As shown in Figure 4.1, the transmission
profile for photons off to either side of the peaks does not distinguish between the qubit states. Thus
if the qubit and resonator are far-detuned compared to χ, control pulses can be applied at the qubit
frequency without measuring the qubit. We will use this convenient fact to apply quantum gates.

4.2.1 Modeling drives

To model single-qubit gates, we note that the effect of a drive is to add a (large, classical) coherent field
[22] to the resonator. Mathematically, this just displaces the resonator field operators a, a† by a classical
component α, so that the Jaynes-Cummings Hamiltonian becomes [14]

Hdrive = ~ω′r
(
a†a+

1

2

)
+

~Ω

2
σz − ~g

(
a†σ− + aσ+

)
− ~g

(
α∗σ− + ασ+

)
where α can be written in terms of the driving field. Assuming the driving field has constant amplitude
ε and frequency ωd, and dropping transients,

α =
ε

ω′r − ωd
e−iωd

Defining the Rabi frequency ΩR = 2εg/∆r, and viewing the system in a frame which rotates with the
drive frequency, the effective Hamiltonian for our driven system becomes

Hrot = ~∆r

(
a†a+

1

2

)
+

~∆q

2
σz − ~g

(
a†σ− + aσ+

)
− ~ΩR

2
σx

where ∆r = ω′r − ωd is the resonator detuning, and ∆q = Ω− ωd is the qubit detuning. It is important
to realize that the last term allows a classical gate pulse to drive the qubit without any dependence on
the resonator. In fact, throughout the manipulations in this section, the resonator will remain empty
(a†a ≈ 0), since we are driving far from ω′r.

4.2.2 Applying gates

Since we are working in the dispersive regime, we perform the same adiabatic elimination as in Sec 3.1.2
to find an effective Hamiltonian [14]. Decoupling the qubit and resonator with U = exp

[
g
∆ (aσ+ + a†δ−)

]
,

and neglecting terms proportional to the occupation of the cavity, we find

Heff ≈ ~∆ra
†a+

~
2

(
∆a +

g2

∆

)
σz +

~ΩR
2

σx (4.1)

where ∆ is still the resonator-qubit detuning. To summarize, this is the effective Hamiltonian of the
transmon in the dispersive limit (qubit detuned from resonator), in a frame rotating with the drive
frequency. There is a photon term, a qubit term with a shifted frequency, and Rabi-flopping term from
the resonator-qubit interaction. From this Hamiltonian, we will create our quantum gates.

Bit-flip

Simply by driving the system with ∆a = −g2/∆, that is, resonant with the shifted qubit frequency
ωd = ωa + g2/∆, the σz term vanishes. The qubit will then rotate about the x-axis at the Rabi
frequency, giving the X gate.
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Phase-gate

Alternatively, if the drive is detuned from the (shifted) qubit frequency, that is, ∆a + g2/∆� ΩR, then
the drive should not induce qubit transitions, and we can adiabatically decouple the qubit from the
drive (by the same procedure used to decouple the qubit from an off-resonant cavity). Applying the
transformation U = exp[ ΩR

2∆a
(σ+ − σ−)], we reduce the effect of the drive to just an energy shift [14]:

H ≈ ∆ra
†a+

1

2

(
∆a +

g2

∆
+

Ω2
R

2∆a

)
σz

So now the qubit frequency in the rotating frame has a shift from the detuned resonator and a shift from
the detuned drive. The σx term has vanished, leaving only a phase rotation, which is controlled by the
amplitude of the drive.

With the resonant x rotations and the detuned z rotations, we can perform any single-qubit gate [1].

4.3 Multi-qubit gates and entanglement

One major advantage of the transmission line is the natural structure for coupling qubits together. For
instance, the transmission line length and frequency can be chosen such that multiple antinodes are
present for coupling to qubits, as shown in Figure 4.2. This section will close the chapter with a brief
mention of how such a system could be used to couple multiple qubits.

Figure 4.2: Multiple qubits can be strung along a single transmission line, far enough apart such that
they only couple through a controllable resonator-based interaction. In this arrangement, each qubit has
finite capacitance to the input or output gates of the resonator, which can be used to separately bias the
individual qubit to its sweet spot. Reprinted from [14].

The Hamiltonian for this system [14] is the natural generalization of Eq 3.2:

H = ~ωr
(
a†a+

1

2

)
+
∑
j=1,2

~Ωj
2
σzj −

∑
j=1,2

~g
(
a†σ−j + aσ+

j

)
(4.2)

where j indexes the qubits. This Hamiltonian provides two categories of approaches to couple the qubits
to one another.

The first and most direct method is to tune Qubit 1 into resonance with the transmission line, let the
Rabi-flopping encode Qubit 1’s state upon the cavity photons, and then detune Qubit 1. Then choose
the tuning of Qubit 2 in order to interact with the cavity photons as desired, and, when finished, bring
Qubit 1 back into resonance to transfer the photon state back into Qubit 1 and empty the cavity.

Exchanging information in such a manner through cavity photons requires that the cavity be of high
quality so that information does not leak away during the gate. But experimenters often prefer to make
use of lower quality cavities [5] so that the quality factor doesn’t limit the speed of measurement pulses
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(measurement, as discussed, is performed near the cavity resonance). In this case, exciting photons in
the cavity incurs losses to the environment, so one would prefer to remain in the dispersive regime with
neither qubit directly coupled to the transmission line.

We can, as before, eliminate the direct resonator-qubit interaction to derive an effective Hamiltonian

for the dispersive regime. Applying U = exp
[∑

j gj/∆j

(
a†σ−j − aσ

+
j

)]
, we find

H = ~ωr
(
a†a+

1

2

)
+
∑
j=1,2

~
2

(
Ωj +

g2

∆j

)
σzj +

g1g2(∆1 + ∆2)

2∆1∆2

(
σ+

1 σ
−
2 + σ−1 σ

+
2

)
The last term is a coupling between the two qubits which doesn’t populate the cavity with photons. It
can be interpreted as a second-order perturbative coupling via virtual photon exchange. By considering
a rotating frame with either qubit frequency, it’s straightforward to see that this interaction will only
be strong if the qubits are tuned to the same frequency. (The same argument could be made by simple
energy conservation.) The coupling by virtual photons thus provides a controllable method for coupling
two qubits together, by tuning the qubits in or out of resonance with one another. This coupling generates
what is known as the

√
iSWAP gate in quantum information [14].

More complex methods for engineering the two-qubit interactions, which avoid having to tune the
qubits, are too numerous to list here [14], but the above discussion should hopefully provide the basic
ideas of how a transmon qubit is well-suited for multiple-qubit gates, a vital component for any non-
trivial quantum computation. And with that, we have the basic ingredients for single and multiple qubit
control and measurement.
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Chapter 5

Conclusion

We have now discussed the Cooper Pair Box, the importance of the charging/inductive energy ratio,
how to raise that ratio to convert the Cooper Pair Box into a transmon, how couple the transmon with
a resonator via the physics of Circuit QED, and how to use that coupling to perform operations on
individual or multiple qubits. These are the basic ingredients to understanding a leading architecture
for superconducting qubits.

The transmon has been modified in multiple ways since its original conception, for instance by
replacing the transmission line with a fully three-dimensional waveguide cavity [23], but the basic concepts
discussed herein remain central to understanding the system. The rapid growth of this architecture is
exciting for the future of quantum computing. Perhaps the most convincing reason to follow the the
transmon, or superconducting circuits in general is highlighted by the exponential trend of Figure 5.1.

Figure 5.1: The timescale of qubit coherence in superconducting systems has seen exponential growth,
from the early nanosecond-scale experiments with CPB systems, into the 100µs-scale experiments with
modern transmon variants. Reprinted from [3].

This trend has been compared to Moore’s law for classical computing [3]. Of course, workable single-
qubit architectures are only the beginning. Forming these systems into full-scale quantum computers is
still a daunting challenge, from which the world has much to gain, and scientists have much to learn.
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Appendix A

Derivation of Classical Hamiltonians
for Qubit Systems

These derivations follow a standard procedure [24] for the writing the Hamiltonians of classical circuits.

A.1 Cooper Pair Box

Figure A.1: Circuit for the Cooper Pair Box, with the node flux variable marked.

The Cooper Pair Box circuit is straightforward to model. Once we remove the voltage source, there
is only one node other than ground, as shown in Figure A.1. Our kinetic part will include a charging
term for both capacitances:

T =
Cg
2
φ̇2
J +

Cj
2
φ̇2
J =

CΣ

2
φ̇2
J

where CΣ = Cg + Cj is the total island capacitance. Our potential terms will include the Josephson
term and the external source energy. The energy which the source supplies is Vg times charge on the
supply-side of the gate capacitor. This charge can be written as the voltage across the gate capacitor
(-φ̇J) times the gate capacitance Cg. Putting that together,

U = −Ej cos

(
2π

Φ0
φJ

)
− VgCgφ̇J

The Lagrangian is then

L = T − U =
CΣ

2
φ̇2
J + Ej cos

(
2π

Φ0
φJ

)
+ VgCgφ̇J

The conjugate momentum is the charge in the island plus an effective offset charge gated by the source.

QJ =
∂L
∂φ̇J

= CΣφ̇J + VgCg
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The Hamiltonian is then

H = QJ φ̇J − L =
(QJ − CgVg)2

2CΣ
− EJ cos

(
2π

Φ0
φJ

)
It is often written in terms of δ, the gauge invariant phase across the junction,

H = QJ φ̇J − L =
(QJ − CgVg)2

2CΣ
− EJ cos (δ)

A.2 Transmon with transmission line

Figure A.2: Effective circuit for the Transmon, with two node flux variables.

The transmon is only slightly more complicated, requiring two node flux variables. For convenience,
we will simply lump the Josephson capacitance CJ into the shunt capacitance CB . The kinetic terms
are the charging terms for each capacitor:

T =
Cin

2
φ̇2
r +

Cr
2
φ̇2
r +

Cg
2

(
φ̇J − φ̇r

)2

+
CB
2
φ̇2
J

The potential terms include the resonator effective inductance, the Josephson term, and the external
energy source, written as before:

U =
1

2L
φ2
r − Ej cos

(
2π

Φ0
φJ

)
− VgCinφ̇r

The Lagrangian is then

L =
Cin

2
φ̇2
r +

Cr
2
φ̇2
r +

Cg
2

(
φ̇J − φ̇r

)2

+
CB
2
φ̇2
J −

1

2L
φ2
r + Ej cos

(
2π

Φ0
φJ

)
+ VgCinφ̇r

The conjugate momenta are more complicated:

Qr =
∂L
∂φ̇r

= (Cin + Cr + Cg)φ̇r − Cgφ̇J + VgCin

QJ =
∂L
∂φ̇r

= (CJ + Cg)φ̇J − Cgφ̇r

And the Hamiltonian, after a great deal of algebra, becomes, up to a constant

H =QJ φ̇J +Qrφ̇r − L

=
φ2
r

2Lr
+

(CB + Cg)Q
2
r

2C2
∗

+
(Cg + Cin + Cr)Q

2
J

2C2
∗

− EJ cos

(
2π

~
φJ

)
+
CgQrQj
C2
∗

+
(CbCin + CgCin)QrVg + CgCinQJVg

C2
∗

21



where
C2
∗ = CBCg + CBCin + CgCin + CBCr + CgCr

in agreement with [4]. The first line is the resonator term, the second is the qubit, and the third is all
of the intercouplings. In the reasonable limit that Cr is much greater than all other capacitances, this
reduces to

H =
φ2
r

2Lr
+

Q2
r

2Cr

+
Q2
J

2CΣ
− EJ cos

(
2π

~
φJ

)
+ β

QrQj
Cr

+
CinQrVg
Cr

where CΣ = Cg + CB and β = Cg/CΣ is an impedance divider ratio which determines how much of the
transmission line voltage is seen by the qubit.

The last term of the above expression does not disappear in the limit of large Cr, because Qr is also
large (such that their ratio is the voltage on the resonator). However, the term coupling QJ and Vg did
vanish. Naively, this is worrisome because that was the term which we would have expected to provide
an effective offset charge (as in the CPB case) which allows use to tune the qubit energy levels.

This trouble appears because our lumped LC model of the resonator is only valid for wavelengths on
the scale of the resonator [14]; it does not work at DC.1 In actuality, the resonator is just a capacitor
at DC, and (again assuming Cr to be the largest capacitance in the system), any DC gate voltage will
show up at the gate capacitor, and have the same effect it would have in the CPB system. We can add
this DC term in to produce the final form of the classical Hamiltonian.

H =
φ2
r

2Lr
+

Q2
r

2Cr

+

(
QJ − CgV DC

g

)2
2CΣ

− EJ cos

(
2π

~
φJ

)
+ β

QrQj
Cr

+
CinQrVg
Cr

1Applying the LC model at DC would for would force the centerline of the resonator to always have zero DC voltage,
because otherwise the current through the “effective inductor” increases to infinity.
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Appendix B

Quantum Circuits

Superconducting electrical circuits can be quantized [24] by imposing a canonical commutation relation
between flux variables and charge variables, [Φ̂, Q̂] = i~. Since our circuits will prominently feature
Josephson junctions, we will conveniently consider this relation in terms of superconducting phase differ-
ence δ̂ across an element and its conjugate momentum, a population difference N̂ of Cooper pairs across
an element. In terms of these unitless variables the relation becomes [δ̂, N̂ ] = i.

B.1 Charge basis

For circuits where the energy is mainly capacitive, we will find it useful to work with a basis of charge
eigenstates {|n〉}, with N̂ |n〉 = n |n〉. For concreteness, imagine the Cooper pair box, that is, a super-
conducting island connected to charge reservoir by a Josephson junction, wherein |n〉 represents the state
in which n Cooper pairs have tunnelled into the island.

First we show that e±iδ̂ are raising and lowering operators for charge [25].

[
N̂, e±iδ̂

]
=

[
N̂,

∞∑
α=0

(±iδ̂)α

α!

]

=

∞∑
α=0

(±i)α [N̂, δ̂α]

α!

=

∞∑
α=0

(±i)α −αiδ̂
α−1

α!

= ±
∞∑
α=1

iα−1 (±δ̂)α−1

(α− 1)!

= ±
∞∑
α=0

iα
(±δ̂)α

(α)!

= ±e±iδ̂

Since eiδ̂ is manifestly unitary, we can choose phases such that e±iδ̂ |n〉 = |n± 1〉, that is

e±iδ =
∑
n

|n± 1〉 〈n|

Since the Hamiltonian generally contains a Josephson term proportional to the cosine of the phase, we
will often find it useful to write [12, 25]

cos δ̂ =
1

2

(
eiδ̂ + e−iδ̂

)
=

1

2

(∑
n

|n+ 1〉 〈n|+ |n− 1〉 〈n|

)
(B.1)
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B.2 Phase basis

Alternatively, we could work with wavefunctions ψ(δ) in δ-space. In this representation, we can satisfy

the commutation relation [δ̂, N̂ ] = i the same way it is done in the Schrödinger equation: by choosing
[12]

δ̂ = δ, N̂ = −i ∂
∂δ

This representation has the convenience of being continuous, so that one may view the equations of
motion of a superconducting circuit within an analogy to the quantum mechanics of a one-dimensional
particle. For instance, in the Cooper-pair box Hamiltonian discussed in Section 2.1:

H = 4EC

(
−i ∂
∂δ
− ng

)2

− EJ cos δ

the equations of motion would be identical to that of a 1-D particle in a cosine potential, as discussed in
C.1.
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Appendix C

Perturbation Theory for the
Transmon

Although the spectrum for the transmon can be given in terms of Mathieu functions as mentioned in
Sec 2.1.2, it will be useful to have some simple expressions for the energies when evaluating properties
of the transmon in the large EJ/EC limit.

C.1 Periodic Potentials

However, before we undertake this task, it will be beneficial to consider more closely the connection
made between the CPB Hamiltonian and the particle in a periodic potential, because a subtlety will
arise in the handling of the offset charge ng which can be explained clearly in this analogy. This familiar
Hamiltonian is

Hcrystal =
−~2

2m

∂2

∂x2
+ V (x), with V (x+ a) = V (x)

By the periodicity, Bloch’s Theorem states that the eigenstates can be written in the form

ψkn(x) = eikxukn(x)

for some ukn(x) such that ukn(x + a) = ukn(x). Plugging in this form and pulling the exponential
through the derivatives, the Schrodinger equation can be rewritten

Eknukn(x) =

[
~2

2m

(
−i ∂
∂x

+ k

)2

+ V (x)

]
ukn(x)

with the boundary condition that u(0) = u(a), u′(0) = u′(a). It is vital to note that the ukn are exactly
periodic, not “periodic up to a phase” like the full Bloch eigenstates ψkn. So we have an effective
Hamiltonian Heff,k for the k wavevector states ukn(x):

Heff,k =
~2

2m

(
−i ∂
∂x

+ k

)2

+ V (x) (C.1)

which is the same form as the CPB Hamiltonian:

HCPB = 4EC

(
−i ∂
∂δ
− ng

)2

− EJ cos δ (C.2)

And the CPB problem carries the same boundary condition as the ukn: the wavefunction must be
periodic, ψ(−π) = ψ(π), ψ′(−π) = ψ′(π), because δ and δ + 2π are the same physical state. The
mapping between these two problems is the similarity between Eq C.1 and C.2.
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C.2 Transforming away the offset charge

Naively, one might think that the offset charge could be removed from the CPB Hamiltonian by writing

ψnga(δ) = e−ingδunga(δ)

essentially doing the inverse of the Bloch’s theorem step above to acheive an offset-free effective Hamil-
tonian. The reason that this trick doesn’t help in general is that it merely shifts the complexity into the
boundary conditions of the problem. Since the ψ has to be periodic, the u will have to be periodic up
to a specific phase:

ψ(−π) = ψ(π) ⇒ u(π)eiπng = u(a)e−iπng

ψ′(−π) = ψ′(π) ⇒ [u′(−π)− ingu(−π)] eiπng = [u′(π)− ingu(π)] e−iπng

Only in cases where we expect the boundary conditions to be irrelevant then, can we transform away
the offset charge. In the case of an extremely deep potential (large EJ/EC), the lowest states should be
localized at the bottom of the well, and the wavefunction should have exponentially small amplitude near
δ = ±π, so any effect that the boundary conditions have on the energy levels should be exponentially
suppressed.

C.3 Duffing Oscillator

Starting from the Hamiltonian in the phase representation, Eq. C.2, we take the limit of large EJ/EC ,
noting that the potential will be deep at δ = 0 and the low-lying states should be well-localized therein.
Therefore, we can (1) transform away the offset charge as argued in the previous section, and (2) Taylor
expand the cosine. We will keep up to fourth-order in δ so as to capture the leading anharmonicity.

H = −4EC
∂2

∂δ2
− EJ +

EJ
2
δ2 − EJ

24
δ4

This is the Duffing (quartic) oscillator. Rewriting it in terms of the harmonic oscillator creation and
annihilation operators:

H =
√

8ECEJ

(
b†b+

1

2

)
− EC

12

(
b+ b†

)4 − EJ
Since EC is small, the unperturbed energies are the harmonic oscillator ladder (minus a constant)

E
(0)
j =

√
8ECEJ

(
j +

1

2

)
− EJ

And taking perturbation theory to first order, we find the corrections to the energy levels

E
(1)
j = −EC

12
〈j|
(
b+ b†

)4 |j〉 = −EC
12

(6j2 + 6j + 3)

C.3.1 Relative Anharmonicity

Evaluating the first transition E01 and the second transition E12:

E01 =
√

8ECEJ − EC , E12 =
√

8ECEJ − 2EC

We find that there is a relative anharmonicity of

E12 − E01

E01
≈ − (8EJ/EC)

−1/2

This agrees with [4].
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C.3.2 Number operator matrix elements

The matrix elements of the number operator will be useful in the discussion of coupling, and, to lowest-
order in EJ/EC , they can be evaluated without even including the perturbation [4], because the main
EJ/EC dependence enters when writing the number operator the standard way in terms of the ladder
operators. Thus, in the large EJ/EC limit, we have

For diagonal elements:

|〈j + 1|n|j〉| =

∣∣∣∣∣−i
(

EJ
32EC

)1/4

〈j + 1|(b− b†)|j〉

∣∣∣∣∣ = 0

For eigenstates separated by k > 1:

|〈j + k|n|j〉| =

∣∣∣∣∣−i
(

EJ
32EC

)1/4

〈j + k|(b− b†)|j〉

∣∣∣∣∣ = 0

For neighboring eigenstates:

|〈j + 1|n|j〉| =

∣∣∣∣∣−i
(

EJ
32EC

)1/4

〈j + 1|(b− b†)|j〉

∣∣∣∣∣ =
√
j + 1

(
EJ

32EC

)1/4

Note that the first and third results above apply to the charge-qubit limit as well at the sweet spot
(as one can easily calculate with the explicit forms of the energy eigenstates there), whereas the third
results would become 1/2 in that limit.
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