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This paper reports the results from three experiments of fundamental superconducting phenom-
ena. First, transition temperatures are found for vanadium, lead, and niobium using the Meissner
effect, and, although the temperatures determined reveal a systematic bias in the apparatus, the
Meissner effect is clearly seen. Second, flux trapping is demonstrated in a superconducting cylinder,
and results clearly show a trapped magnetic field within experimental precision. Finally, the I-V
characteristics of a Josephson junction are used to determine the niobium superconducting gap, and
find the value of the magnetic flux quantum within one sigma of the accepted value.

I. INTRODUCTION

Superconductitivity, the resistanceless flow of current
and perfect expulsion of magnetic fields, is a beautiful
example of quantum behaviour manifested on a macro-
scopic system. In the century since its discovery, su-
perconductivity has seen application in a wide range of
practices, from magnets for medical imaging to potential
qubits for quantum computing, even while many funda-
mental physical questions remain unanswered [3]

This experiment surveys several of the fundamental
phenomena in superconductivity: using the Meissner ef-
fect to find transition temperatures, trapping magnetic
flux inside a superconducting cylinder to produce an ex-
tremely stable magnet, and probing the current-voltage
characteristics of Josephson junctions to determine the
value of the magnetic flux quantum.

II. APPARATUS

The three experiments discussed herein made use of
three separate probes. The features of each probe are
discussed within each relevant section (III, IV, V), and
the overall matters of procedure are addressed here.

For each experiment, a probe is fasted in the neck of a
large dewar holding typically ∼ 25L of liquid He provided
by the MIT Cryogenic Lab. The head of the probe sits
near the base of the dewar neck (for the Tc probe, this
is 10cm above the base, and for the flux-trapping probe,
this is 4cm above the base, whereas for the Josephson
probe, this height is adjusted to set the temperature.)

Control over temperature is a difficulty in this exper-
iment. The two probes whose positions are fixed allow
temperature control by pumping helium out of the dewar
through the probe and varying the flow rate. Tempera-
ture is measured from the voltage across a calibrated sili-
con diode (or carbon resistor for the flux-trapping probe),
but this is a major source of uncertainty. First, the cur-
rent source which supplies the diode current experiences
fluctuations which, at the most sensitive points of the
calibration, may affect the temperature readout by about
∼.1K. Second, the temperature gradient along the probe
is large and non-uniform (and proper calculation would

have to account for the effects of cold gas flow in addi-
tion to the heat conduction). For a rough estimate, the
temperature needs to increase 270K over about 50cm, so
it is not difficult to imagine that a diode .5cm away could
be off by a shift of up to 2.7K. These considerations will
soon become important.

III. TRANSITION TEMPERATURES

The first part of the experiment uses the sudden, com-
plete rejection of magnetic field by a superconductor in
order to locate the transition temperatures of vanadium,
niobium, and lead.

The probehead for this experiment contains two coils:
the outer solenoid (2200 turns, 31.0mm) and the inner
“test” coil (810 turns, 12.0mm), wrapped around an in-
terchangeable superconducting cylinder. An AC voltage
of 500mVrms

1 at 200Hz is applied to the solenoid to gen-
erate an AC magnetic field, which couples into the inner
test coil to produce a produce an AC voltage in the test
coil on the order of 3mV.

Above their critical temperatures, all the supercon-
ducting materials have negligible magnetic properties
and don’t interfere with the inductive coupling of the
coils. However, below their critical temperatures, the
superconductors perfectly oppose the fields of the outer
coil within their bulk, thus reducing the signal from the
test coil. This change in the test coil signal, which in
our experiment amounts to typically a ∼20% (or ∼.7mV)
change over the span of about .5 Kelvin, marks the tran-
sition temperature.

Figure 1 shows several scans of the transition in vana-
dium, which displays some hysteretic behavior. Each
scan is fit to a logistic curve and the center tempera-
tures are averaged together to produce a final Tc esti-
mate. The variation in that averaged set is taken as a
statistical uncertainty, and the thermometer uncertainty

1 Note that 500mVrms is merely the nominal setting on the Agilent
function generator; the actual voltage supplied to the test coil is
measured to be on the order of 100mVrms because the generator
is loaded down by the low-impedance coil.
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FIG. 1: Transition curves for the Vanadium sample
showing Tc = 6.05± .11stat ± .08sysK, statistical errors

coming from the fitting uncertainties, systematics
coming from the hysteretic variation.

given by current variations (discussed in Sec. II, but
computed for each temperature separately from the cal-
ibration curve) gives the systematic error. Each of these
data should also be taken with the understanding that
an overall shift from the temperature gradient (as also
discussed in Sec. II) may apply.

The transition temperatures for each sample are shown
in Table I. The transition in niobium, like that in vana-
dium, is sharp and well-defined, whereas the transition
in lead is complicated by broader temperature depen-
dent behaviour, producing a wide, dominant systematic
uncertainty. These temperatures are generally a couple
of Kelvin above the accepted values, most likely due to
temperature gradient between the temperature diode and
the sample.

Sample Tc σstat σsys Accepted
V 6.05 .01 .08 5.40
Pb 9.50 3.91 7.20
Nb 12.72 .07 .13 9.25

TABLE I: Fitted transition temperatures and
uncertainties for each sample, compared with previously

accepted values (all in Kelvin). Note that time
constraints limited the number of measurements on Pb,

which is why no statistical uncertainty is given.

For the purposes of this paper, the transition temper-
ature determination serves more as a background for the
demonstration of the exciting effects to be discussed in
the coming sections, but more information on this topic
can be found in the companion paper by Zhou.

IV. PERSISTENT CURRENTS

As discussed previously, a key distinction of the su-
perconductor is its perfect diamagnetism, its ability to
expel all magnetic field lines from the material bulk.
Since magnetic field lines cannot pass through the mate-
rial once superconducting, a hollow circle or cylinder of
superconducting material can be used to trap field lines
inside.

The probe for this experiment contains a hollow lead
cylinder (9cm long, with inner diameter 1.11cm, outer
diameter 1.43cm). A 2210 turn, 4.45cm solenoid is wound
about the cylinder, and a Hall probe and carbon resistor
thermometer are both inside.

A field is passed through the cylinder when above the
critical temperature, and then the cylinder is cooled into
the superconducting phase, at which point the supercon-
ducting body will expel magnetic field, but the hollow
core will not. The lines passing though the core, topolog-
ically speaking, are trapped by the perfect diamagnetism
surrounding them. Even if the external source of mag-
netic field is removed, the magnetic field passing through
the core must not change, and supercurrents will flow
within the cylinder in order to guarantee just this.

This can be seen in Figure 2, which contains four
scans of the solenoid current. One scan is taken above
the critical temperature to demonstrate that the Hall
probe gives a voltage linear in magnetic field (χ2

R = .55).
Then, three separate times, the solenoid current is set to
some value (0mA, 50mA, 100mA), the sample is cooled
down, and the solenoid current is scanned from 0mA to
100mA to demonstrate that the Hall voltage does not
change (within the discretization uncertainty) once the
sample is superconducting. This perfectly fixed (within
discretization error) magnetic field measurements pow-
erfully demonstrates the phenomenon of “frozen-in flux”
protected by supercurrents.

V. JOSEPHSON JUNCTIONS

Whereas the previous experiments have focused on the
characteristics of a single body of superconducting mate-
rial at a time, further effects can be observed by coupling
together multiple superconducting regions. A Joseph-
son junction is precisely that situation: two blocks of
superconductor with a thin insulating layer between to
allow for tunnelling. Certainly, should the voltage across
the junction be high enough, electrons may break out
of the Cooper pairs and tunnel across the insulating
layer. Brian Josephson’s Nobel-winning prediction was
that Cooper pairs themselves could also tunnel through
the junction, with a rather remarkable I-V characteristic
[3].

The probe for this experiment uses one junction on a
chip of 81 circular niobium/ aluminum oxide/ niobium
Josephson junctions, each wired for a four-point resis-
tance measurement. Each junction is 15µm in diame-
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FIG. 2: Demonstration of persistent supercurrents.
Circles represent data taken above Tc, where the

magnetic field (given by the Hall voltage) is just linear
in the solenoid current. The crosses represent data
taken below Tc, where the superconducting cylinder

prevents any change in the magnetic field. Note:
individual error bars, which arise from discretization

error in measurement, are too small to appear.

ter, with an oxide thickness of 1.75±.25nm. The volt-
age across a nearby silicon diode provides a temperature
reading.

Feynman [1] gives a brief and accessible derivation of
the electrical characteristics which will be observed in
this section. Since some parts of the later analysis de-
pend on the principles of the Josephson junction, this
derivation is summarized below.

V.1. IV Characteristic

For a junction as depicted in Figure 3, consider the
Cooper pair wavefunction as having two components: ψ1

on the left side of the junction, and ψ2 on the right. A
voltage V is applied across the junction to create a differ-
ence in the energy levels, and some non-zero tunnelling
element K is assumed, leading to the usual two-state
equations:

ψ̇1 =
qV

2
ψ1 +Kψ2, ψ̇2 = −qV

2
ψ2 +Kψ1

One may then interpret the component ψi =
√
ρie

iθi

in terms of the probability ρi of finding a Cooper pair in
side i; this is useful because, in a macroscopic ensemble of
Cooper pairs, the carrier density in side i is proportional
to ρi. With this interpretation, the current across the
junction is then proportional to −ρ̇1 = ρ̇2. Additionally,
any physical quantity having to do with the phases θi

should be expressible in terms of δ = θ1 − θ2, since the
global phase is unobservable.

FIG. 3: Two-state model for deriving the Josephson
equations, where the amplitude in each state is written

explicitly in terms of the probability ρi to find the
Cooper pair in this state.

Substituting in this interpretation and solving will then
give the current-voltage relation across the junction. Of
course, in practice, the ρi should not be changing at all,
since any Cooper pair which tunnels across the junction
must be replenished by the circuit; nonetheless, this in-
tuitive method yields the correct relations, known as the
Josephson equations [1]:

J = J0 sin δ, δ = δ(0) +
2e

h

∫ t

0

V dt

where the constant J0 absorbs the geometry of the junc-
tion, thickness of the insulating layer, etc.

V.2. Results

Consider these relations in more depth. At V = 0,
δ is any constant, so any current (with magnitude less
than J0) may flow through the junction at zero-voltage.
This is evident in the center of the experimental I-V
curve of Figure 4. At finite voltage, δ oscillates with
angular frequency 2eV/h. Since 2e/h = 484MHz/µA,
even the smallest voltages will produce current oscilla-
tions which average to zero faster than the timescale of
standard equipment; thus there is effectively no current
beyond 0V. That is, until the voltage reaches 2∆/e, and
provides the energy necessary to break a Cooper pair,
and we begin to see an ohmic current due to electron
tunnelling [3], visible on either side of the scope trace.

From the IV curve in Figure 4, we easily determine
the superconducting gap in niobium. The start of each
normal-conducting line should be 2∆/e from the 0V
point, so, setting the cursors at the onset of normal con-
duction, we take the cursor voltage difference, divide out
a factor of four and the 100x amplification, and read
off ∆ = .70± .12meV, where the systematic uncertainty
comes from the width of the 200Hz oscilloscope trace.)

For comparison, Novotny and Meincke [4] extrapolate
a zero-temperature niobium gap of ∆(0K) = 1.45meV
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(and a Tc = 9.26). Townsend and Sutton [2] report that
the temperature dependence of the energy gap obeys

∆(T )

∆(0K)
= tanh

(
∆(T )

∆(0)
× Tc
T

)
Solving this, we find that our ∆ is consistent with a tem-
perature of .92Tc, or 8.5K, which is about 5% lower than
our nominal temperature of 8.9K. This will be useful in
estimating our probe-specific temperature uncertainties
in the flux quantum analysis.

FIG. 4: Oscilloscope trace demonstrating the Josephson
IV relations at a nominal temperature of 8.9K. (Vertical

axis is uncalibrated current, horizontal axis is the
junction voltage amplified by a factor of 100). This

trace shows a niobium superconducting energy gap of
∆(8.9K) = .70± .12meV.

V.3. Magnetic field dependence

The application of a magnetic field through the insu-
lating region parallel to the plane of the junction also
produces an interesting modulation of the current, from
which the magnetic flux quantum can be determined.

A magnetic field B through the junction (of side-length
L and thickness t) can be accounted for by a vector po-
tential A of magnitude LteffB/2 on both sides (where the
teff takes into account field penetration into the super-
conducting regions, and will be discussed shortly). Ref-
erencing Equation 1 for the current density, we see that,
in order that there be no current parallel to the junction,
the phase must vary along the junction.

J =
~
m

(∇θ − q

~
A) (1)

The effect of this variation is a position (x) dependence
of δ(x) = δ0 + qLteffBx/~ along the junction perpen-
dicular to the field. Since the current density J(x) is a
function of δ(x), the current density varies with position,
and the total current can be found by integrating J(x)

over x. The maximal current which one would measure
at a specific value of the magnetic field can be found by
maximizing

∫
Jdx over the possible values of δ0. One

finds

J0 ∝ max
δ0

∫ L

0

dx sin δ(x) ∝ sinc(B/B0)

whereB0 is such thatB0L(2λ+t) = h/2e. Figure 5 shows
intuitively how this will modulate the current, resulting
in a sinc(B/B0) dependence for a rectangular junction
[5].

FIG. 5: Magnetic field varies the phase along the
junction, modulating the current. Reprinted from [5].

Measurements of the current modulation by magnetic
field are shown in Figure 6, along with three fits. The
above mentioned standard sinc functional form is named
the “rectangular” fit. However, we see that it does not
fall off quite as fast as the data at high field. One cause
for this deviation is that our junctions are not actually
rectangular, but circular. To account for this, we model
the junction as a sum of many infinitesimal rectangular
junctions of length l, and integrate these contributions
together, each weighted by a factor of l (since each junc-
tion contributes a current proportional to its length) and

a Jacobian factor of l/
√
l2 + L2 from the circular shape.

Then the total is maximized over δ0 (this maximization
should be done with the overall expression rather than for
each slice, since the phases of the junction slices are tied
together). The result is non-analytic; the final expression
used for fitting is as follows:

J0 ∝ max
δ0

∫ L

0

dl
l2√

(l/2)2 + (L/2)2

B0

B
× (2){

cos(2π
Bl

B0L
+ δ0)− cos(δ0)

}
Equation 2 is used for the “circular” fit, which, as we

see in Figure 6, captures more but not all of the high-
field fall-off. Finally, the “suppressed” fit simply multi-
plies that standard sinc dependence by an unmotivated
exponential factor to force it down to the high field data.
χ2
R values and B0 values are given for each fit in Table

II.
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FIG. 6: Variation of the Josephson current with magnetic field at nominal temperatures of 8.2K (left) and 7.1K
(right). Three fits are shown to the data points. The “rectangle” fit (solid) uses the standard sinc(B/B0) expression.
The “circle” fit (dashed) modifies the standard expression for a circular junction, and we see that it comes closer to

the low-lying data points at high field. The “suppressed” fit simply multiplies the sinc(B/B0) function by an
(theoretically unjustified) exp(B/B1)2 suppressing it to fit the low-lying data points.

8.2K 7.1K
χ2
R B0 [G] σB [G] χ2

R B0 [G] σB [G]
Rectangular 17.2 12.3 .2 15.7 13.2 .2
Circular 12.0 11.1 .2 6.6 12.1 .1
Suppressed 4.6 12.6 .2 6.8 13.5 .2

TABLE II: Fit values with statistical uncertainties for
the data in Figure 6.

To find the flux quantum, we multiply the fitted mag-
netic field period B0 by the dimensions of the junction
Φ = B0Lteff. The diameter, L, is simply 15µm, but the
penetration-aware thickness, teff, includes a temperature
dependence.

teff = t+ 2λ = 1.75nm + 2× 39nm/
√

1− (T/Tc)4

This factor comes with a .25nm uncertainty in the ac-
tual junction thickness, as well as a propagated 5% tem-
perature uncertainty, estimated earlier from the energy
gap considerations. The B0 values are averaged (within
each temperature) from Table II, and the variation is
used to estimate a systematic B0 uncertainty from the

procedure. Each average B0 is multiplied by the respec-
tive dimensional factors, accounting for their various un-
certainties.

The 8.2K run finds Φ = 1.90 ± .13sys ± .02stat, and
the 7.1K run finds Φ = 2.29± .28sys ± .03stat. Averaging
these two estimates together and estimating the system-
atic uncertainty by their difference, one finds

Φ = (2.10± .19sys ± .03stat)× 10−15Wb

which is within one sigma of the accepted value,
2.07×10−15Wb.

VI. CONCLUSION

We have performed three fundamental experiments in
superconductivity. In the process, we observed the Meiss-
ner effect in three materials, and used it to estimate the
their transition temperatures, but were limited by large
temperature uncertainties. We then moved on and ob-
served a trapped flux in a superconducting cylinder. And
finally, we used a Josephson junction to find the value
of the magnetic flux quantum within one sigma of the
known value.
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