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1 Finite Groups

1.1 Definitions

A representation, D(g) of a group G, is a linear space with a mapping from
the group elements to a set of operators on the space which satisfy D(g1g2) =
D(g1)D(g2) and D(e) = 1.

A unitary representation is one in which all operators are unitary. Two rep-
resentations, D1(g) and D2(g), are equivalent iff there is an invertible matrix A
such that D(g) = A−1D(g)A. A representation is reducible if it has an invariant
subspace, ie there is a projector P such that ∀g,D(g)P = PD(g)P . A repre-
sentation is irreducible if it is not reducible, and a represenation is completely
reducible if it is equivalent to a direct sum of irreducible representions.

The regular representation is defined by labelling each basis vector of a linear
space (with dimension equal to the group order) by one element of the group.
The action of D(g1) on basis vector |g2〉 is D(g1)g2 = |g1g2〉.

1.2 Vital Theorems

• Every finite representation is equivalent to a unitary representation.

• Schur’s lemma: if two irreducible representations, D1(g) and D2(g) satisfy
AD1(g) = D2(g)A, then A is invertible or null. If A is invertible, then D1

and D2 are, by definition, equivalent.

In the case of D = D1 = D2, A must be proportional to the identity. (ie
if an operator commutes with every D(g), it must act trivially upon every
element in the space on which D acts.)

• Every representation of a finite group is completely reducible.

1.2.1 Application of Schur’s Lemma

Consider an observable O that is invariant under some finite symmetry group
which acts as D(g) on the Hilbert space, that is ∀g, [O,D(g)] = 0.

If we decompose the Hilbert space into inequivalent irreducible representa-
tions Da(g) of D(g), and label each state as follows: |a, j, x〉, where a gives
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which irrep it belongs to, j gives the index within an irrep, and x is any other
physical parameter unrelated to the symmetry1.

Then, consider the matrix elements of O between to any pair of irreps a, b
with physical parameters x, y respectively. Let’s call this Oaxby. By the com-
mutation relation above, we gather that OaxbyDa = DbOaxby. So, by Schur’s
lemma, we have, for given x, y, the following: if a 6= b, then Oaxby = 0, if a = b,
then Oaxby is proportional to the identity. This can be written as the following
constraint on O:

〈a, j, x|O |b, k, y〉 = δa,bδj,kfa(x, y)

So O depends trivially on j, k, and does not connect unlike irreps. All of the
physics is contained in fa(x, y). Note that, if an irrep appears only once, then
there is only one possible input to fa, so the irrep must be an eigenspace of O.

1.2.2 Orthogonality Relations and Counting

By consideration of the following “dyadic” for unitary Da and Db,

Aa bj l =
∑
g

Da(g−1) |a, j〉 〈b, k|Db(g) (1)

we find our first orthogonality relation:∑
g

na
N

[Da(g)]∗j k[Db(g)]lm = δa bδj lδkm (2)

It is simple to write any function of the group elements as a linear combi-
nation of the matrix elements (viewed as functions of the group elements) of
the regular representation, and this implies that the function could similarly
be written as a linear combination of the matrix elements of the irreps. Since
we’ve just shown that the irrep matrix elements are orthogonal, we have that
the irrep matrix elements form a complete orthogonal basis for the space of
functions f(g). Consequently, the dimension of the spaces of matrix elements
of all the irreps is the same as the dimension of the space of functions of the
group elements, ie

N =
∑
i

n2i (3)

1.3 Characters

Characters are the traces of the irrep matrices:

χD(g) = TrD(g) (4)

Because of the cyclic properties of the trace, (1) equivalent reps have the same
character, and (2) for given D, the character is constant on conjugacy classes
of G.

1Note that the decomposition of D may in general include multiple repititions of the same
irrep, Da. The states of such multiple repititions are distinguished by the value of the “other
physical parameter” x. We implicitly take it that, for any a, each repition, Da has the same
matrix elements (ie the matrix elements of Da do not depend on x).
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The orthogonality relation, Eq (2), for irrep matrix elements yields useful
orthogonality relations for characters.

1

N

∑
g

χDa(g)∗χDb(g) = δa b (5)

From this, one can show that the characters provide a complete orthogonal
basis for functions that are constant over each conjugacy class, and thus the
number of irreps equals the number of conjugacy classes. One important case
of this is that an abelian group of order N has N one-dimensional irreps.

And the constancy on conjugacy classes can convert the above relation to a
sum over conjugacy classes α:∑

α

kα
N
χDa(gα)∗χDb(gα) = δa b (6)

which implies a complementary orthogonality between characters of conjugacy
classes for a sum over representations:∑

a

kα
N
χDa(gα)∗χDa(gβ) = δαβ (7)

Eq (5) can easily be used to find the multiplicity of an irrep in a rep:

1

N

∑
g

χDa(g)∗χD(g) = mD
a (8)

because χDa⊕Db = χDa + χDb . Important case: by considering the character of
any regular representation, one can show that it must contain each irrep with a
multiplicity equal to that irrep’s dimension. This jives well with Eq (3).

We can also find a projector onto any irrep space from Eq (2):

Pa =
na
N

∑
g

χDa(g)∗D(g) (9)

2 Lie Groups

If we have a group smoothly parameterized by some factors αa, were we chose
g(0) = e, then we parameterize the representation similarly, and define the
group generators2 Xa = −i ∂

∂αa
D(α). Then, within a small neighborhood of the

identity, D(dα) = 1 + idαaXa.
We can define for finite α

D(α) = lim
k→∞

(1 + iαaXa/k)k = eiαaXa

This will define the representation since each the exponentiated term inside the
limit approaches the matrix representation of a group element for large k.

2This definition ensures that when the representation is unitary, the generators are Her-
mitian.
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Since the exponentials represent the group close to the identity, products of
exponentials must themselves be exponentials of generators; that is, for any α
and β, there must exist a δ such that

eiαaXaeiβbXb = eiδdXd

Expanding and equating powers will show that this requires the generators to
form an algebra under commutation:

[Xa, Xb] = ifabcXc

The f are called structure factors, and (using that they change sign under a↔ b,
one can show they must be real for unitary representations. The structure
constants completely determine the Lie algebra, and do not depend on the
representation used to define the generators (they are fixed purely by the group
multiplication and smoothness).

The generators will also satisfy the Jacobi identity (which can be seen by
expanding out commutators):

[Xa, [Xb, Xc]] = [[Xa, Xb] , Xc] + [Xb, [Xa, Xc]]

2.1 Adjoint Representation

Each group representation furnishes a representation of the Lie algebra by defin-
ing the Xa. (A representation of a Lie algebra is a mapping which preserves the
commutators).

Alternatively, one natural choice is the adjoint representation which is purely
defined by the structure constants. The adjoint representation of the algebra is
given by the matrices Ta where

[Ta]bc = −ifabc

(That this actually represents the Lie algebra can be shown from the Jacobi
idenity.)

For a scalar product on the adjoint representation, we may use Tr(TaTb).
By a properly chosen linear transform on the Xa (which corresponds to a trans-
form on the αa used to parameterize the group), we may diagonalize the inner
product. That is, we can reparameterize the group in such a way that

Tr(TaTb) = kaδab

(where we are still free to rescale the k, but not change their signs). For our
purposes, we will care only about algebras in which all the k are positive (com-
pact algebras), and rescale such that all are the same value λ. In this basis, the
structure factors are completely antisymmetric. In turn, the Ta are Hermitian
and the adjoint representation of the group is unitary.

2.2 Simple groups and algebras

An invariant subalgebra is a set of generators which when commuted with any
generator in the whole algebra results in a generator in the subalgebra. Expo-
nentiating invariant subalgebras gives invariant subgroups.
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An algebra which has no proper invariant subalgebras is called simple. A
simple algebra generates a simple group. The adjoint representation of a simple
Lie algebra (if chosen as above to be unitary) will be irreducible.

A U(1) subalgebra is a single generator which commutes with all the genera-
tors. Since these algebras force a zero value of ka, the trace product will not give
a norm on such spaces. Algebras without U(1) groups are semisimple, and these
are constructed from simple algebras. From here on, unless otherwise stated, we
deal with compact, semisimple Lie algebras and their unitary representations.

2.3 Transformations

Finite:

|k〉 → eiαaXa |k〉
〈k| → e−iαaXa 〈k|
O → e−iαaXaOe−iαaXa

Infinitesimal:

|k〉 → |k〉+ δ |k〉 , δ |k〉 = iαaXa |k〉
〈k| → 〈k|+ δ 〈k| , δ 〈k| = −〈k| iαaXa

O → O + δO, δO = i[αaXa, O]

Also, here’s a neat formula:

∂

∂αb
eiαaXa =

∫ 1

0

dseisαaXa (iXb) e
i(1−s)αcXc

3 SU(2)

The SU(2) algebra is defined by the following commutation relation for the
operators Ja where a = 1, 2, 3:

[Ja, Jb] = iεabcJc

Here we find all the finite representations of the SU(2) group by the highest-
weight construction.

Why only finite representations?

According to the Peter-Weyl theorem, which is beyond our scope, all irre-
ducible Hilbert space representations of a compact group (e.g. SU(2)) are finite
dimensional.
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3.1 Raising and Lowering Operators

First, we diagonalize J3. (Since none of the operators commute, diagonalizing
one is the best we can do to simplify our lives.) At first, we label the states of the
space |m,α〉 where m is the eigenvalue of J3 and α distinguishes within degen-
erate spaces. (We shall see that α is unneccessary later, but for the remainder
of this discussion, assume one fixed value of α.)

Define the operators
J± = (J1 ± iJ2)/

√
2

which satisfy

[J3, J
±] = ±J±

[J+, J−] = J3

This implies that J3J
± |m,α〉 = (m± 1)J± |m,α〉, so these operators raise and

lower the m value by 1. Whatever state in the (a priori degenerate) m − 1
eigenspace of J3 is proportional to J− |m,α〉, this is the one we shall label
|m− 1, α〉. (That is, by labelling choice, the lowering operator does not change
α from whatever value we have chosen.)

A priori raising and lowering operators

One can make the definition of the raising and lowering operators seem less
arbitrary and magical. Take the raising operator for concreteness. In order to
have a raising operator J+ which raises the eigenvalue of J3, we will want a
commutation relation of the following form:

[J3, J
+] = bJ+

where b is some constant. (In fact, it’s not neccessary to make b constant; one
could walk through a similar discussion with [J3, J

+] = J+b(J3) which does not
a priori assume constant steps.)

Since the algebra is spanned by the Ja, we write J+ = αaJa, and the above
becomes

iα1J2 − iα2J1 = b(α1J1 + α2J2 + α3J3)

So, since the Ja are independent, α3 = 0, and we are left with

iα1 = bα2, α2 = ibα1

This can only be solved with non-zero α if b = 1. The solution is then

J+ ∝ (J1 + iJ2)

Thus we have found the raising operator, up to arbitrary normalization.

So, in the eigenbasis of J3 the matrix elements of the raising and lowering
operator are [J±]m′α′,mα = n±m(α)δm′,m±1 where n±m(α) is to be determined.
Note n+m = (n−m+1)∗, so we may as well just worry about the lowering operator,
and say nm for n−m.
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Let j be the highest value of m. Since there is no |j + 1, α〉, we must have
J+ |j, α〉 = 0. Now we find the matrix elements for the lowering operator by
enforcing normalization of the states with lower m values.

1 = 〈j − 1, α|j − 1, α〉

=
1

|nj(α)|2
〈j, α| J+J− |j, α〉

So

|nj(α)|2 = 〈j, α| [J+, J−] |j, α〉
= 〈j, α| J3 |j, α〉
= j

We are free to set the phase of the states, so we may as well say nj(α) =
√
j.In

fact, doing the same for any |j − k, α〉 yields a recursion relation for the nm,
which we solve to find

nm(α) =
1√
2

√
(j +m)(j −m+ 1)

Since we are in a finite space, if we keep lowering, we must at some point
reach a state such that J− |j − l, α〉 = 0, that is, nj−l = 0. For this to be the
case, we must have j = l/2 for some integer l. Such a j gives us a finite tower
of states (in fact, 2j + 1 states).

Furthermore, since

J− |j − k, α〉 ∝ |j − k − 1, α〉

and
J+ |j − k − 1, α〉 ∝ J+J− |j − k, α〉 = J3 |j − k, α〉 ∝ |j − k, α〉

We can lower and raise the states within a tower without changing α. Since
J3 and the raising and lowering operators span the algebra, our set of states
labelled by that single α value is invariant. So, since we are considering only
irreps, we may discard α, and each J3 eigenspace is non-degenerate.

We now have the matrix elements of J3, and J±. We found that there is an
irrep for any half-integer j (known as the “spin-j” representation). For instance,

if we take j = 1/2, then we find that J
1/2
a = 1

2σa, where the σa are the Pauli
matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
This triplet of Special Unitary matrices of dimension 2 is the “defining repre-
sentation” of SU(2). From here on out, we will switch to a standard notation
|j,m〉 in which, again, m is the J3 eigenvalue, and j labels the maximum m.

3.1.1 Generalization

The procedure used above works for a general (not necessarily irreducible) rep-
resentation of SU(2). Diagonalize J3, find the highest m, and use the lowering
operator to find all states in that irrep; then, focus on the space orthogonal to
those states just located and recurse. We will later generalize this (the “highest
weight decomposition”) beyond SU(2).
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3.2 Addition of Angular Momentum

If one space {|i〉} transforms under the representation D1, and another {|j〉}
under the representation D2, then the tensor product space {|i〉 |j〉} transforms
as |i〉 |j〉 → D1⊗2 |i〉 |j〉 = (D1 |i〉)(D2 |j〉). If we examine around the identity,
we see that this implies that the representations of the Lie algebras combine in
a straightforward manner:

J1⊗2
a = J1

a ⊗ I2 + I1 ⊗ J2
a

or, as we will often abbreviate,

J1⊗2
a = J1

a + J2
a

Since we have diagonalized J3, this expression becomes particularly easy to
work with for J3 and eigenstates of J3:

J1⊗2
3 |j1,m1〉 |j2,m2〉 = (m1 +m2) |j1,m1〉 |j2,m2〉

That is, J3 values add. One can then use the procedure from Sec 3.1.1 to
decompose the representation into a direct sum of spin-j irreps.
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Tensor product of spin irreps

The following is Exercise 3.A, but it’s important enough to work out here.
If we tensor together a spin-j with a spin-s, then the result is a direct sum of
representations from |j − s| to j + s, stepping by one, ie

{j} ⊗ {s} =

j+s⊕
l=|j−s|

{l}

We prove this by counting the multiplicity of m values in the product and
then employing the highest weight decomposition. Let’s assume WLOG that
j ≥ s.

• Now, the number of states with m = j + s is one: {|j, j〉 |s, s〉}.

• The number of states with m = j + s − 1 is two:
{|j, j − 1〉 |s, s〉 , |j, j〉 |s, s− 1〉}.

• And, continuing on, the number of states with m = j + s − k is k + 1,
since we can lower the first factor ket by any number n from 0 to k, and
lower the other ket by k − n to ensure that the total is m = j + s− k.

• This works until we reach k = 2s, at which point we are limited in how
many times we can lower the second ket.

In short, we know that, for k ≤ 2s, there are k + 1 states with m = j + s − k.
We could continue counting for k > 2s without much trouble, but we actually
won’t need to.

Following our procedure, we take the state with the highest m value, m =
j + s, and lower it, grabbing one state from each m value between j + s and
−(j+ s). This gives us the spin-(j+ s) irrep. Now there is only one state left in
m = j + s− 1, so we grab it, and lower to find the entire spin-(j + s− 1) irrep.
Now there is only one state left in m = j + s − 2, etc. . . From the counting we
did above, we see that this gives us all of the irreps between j + s and j − s.

Now we can simply count the number of states we’ve identified to show we’ve
got them all. The total number of states in this representation is (2j+1)(2s+1).
For each k between 0 and 2s, we got an irrep with 2(j+ s− k) + 1 states. Some
basic arithmetic shows that

(2j + 1)(2s+ 1) =

2s∑
k=0

[2(j + s− k) + 1]

so we’ve actually identified all of the states to their irreps already.

4 Tensor Operators

A tensor operator is a set of operators which transform under commutation
with the generators of a Lie algebra the same way that the states of an irrep
transform under multiplication by those generators, ie {Ol} is a tensor operator
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under an irrep of SU(2) if

[Ja, Ol] = Om[Ja]ml

where the Ja are the generators of that Lie algebra in that irrep.

4.1 Choosing the operator basis

For a concrete example, say we have particle with no spin, so that the angular
momentum is just orbital: Ja = La = εabcrbpc. The position operator trans-
forms as

[Ja, rb] = [εacdrcpd, rb] = −iεacbrc = rc[J
adj
a ]cb

where “adj” stands for the adjoint representation. The adjoint representation is
equivalent to the spin-1 irrep, so a change of basis on the position indices should
bring this into “standard form” (ie transforming with the matrix elements of
the spin-1 irrep).

Ja = La?

We didn’t actually make the connection yet that Ja equals the orbital angular
momentum operator, La. In fact, we never said how Ja acts upon this space.
One way to go about defining this is to consider what unitary represents rotation
on the Hilbert space of 3D spatial wavefunctions, then define Ja as the generator
of that unitary and check that it satisfies the proper commutation relations (as
in Sakurai).

However, skipping over a lot of detail, we could just say what effect an
infinitesimal rotation should have on the position operator. A small rotation of
rb by an angle of αa about the a axis should add a small component of rc. That
is to say, the infinitesimal change to rb should be δrb = αaεabcrc.

And looking back to the transformation properties of operators in Sec 2.3,
we see that an infinitesimal rotation Ja should produce a change δrb = i[Ja, rb],
and thus [Ja, rb] = −iεabcrc. Thus we get the commutation relation between
the generator of rotation and the position operator.

Since the adjoint representation is equivalent to the spin-1 irrep, we could
find the similarity matrix relating the two and use it to transform the ra oper-
ators into standard form. Or we could take a more specific route:

Since [J3, rz] = 0, we know rz must be the m = 0 operator. And then we just
apply the raising and lowering operators [J±, rz] = ∓(rx ± iry)/

√
2 to find the

m = ±1 operators respectively. So the tensor operator for position in standard
form is

{r0 = rz, r±1 = ∓(rx ± iry)/
√

2}

Now there’s an important note about decomposing sets of operators which
transform under reducible representations. The concept is, again, the highest
weight construction, but there’s one trick. Whereas with states, one can identify
one irrep and then “choose an orthogonal space,” we haven’t defined a scalar
product on the operators. Nonetheless, instead of using orthogonality, we can
solve for the linear combination of operators which has a vanishing commutator
with J+. The rest is the same.
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4.2 Wigner-Eckart Theorem

The interesting aspect of tensor operators is how the product of a tensor operator
and a state transforms:

JaO
s
l |j,m, α〉 = [Ja, O

s
l ] |j,m, α〉+Osl Ja |j,m, α〉

= Osl′ [J
s
a ]l′l |j,m, α〉+Osl |j,m′, α〉 [Jja ]m′m

that is, the same way as the tensor product of two states. As a first note, we
again see that our diagonalized J3 values add.

J3O
s
l |j,m, α〉 = (l +m)Osl |j,m, α〉

Since we already know how product states decompose into irreps, we can use
that structure to simplify calculations on tensor operators. Below we will prove
the Wigner-Eckart theorem, which gives an expression for the matrix elements
of these tensor operators.

Step 1: We recognize that, because we know the transformation properties
of the Osl |j,m, α〉, we must be able to express them in terms of the known basis
states with those transformation properties. What that expression is depends,
of course, on the operator Osl , but all of that dependence is hidden inside the
constants kαβ.

Following the style of the highest-weight decomposition, we know thatOss |j, j, α〉
transforms like the J3 = s+ j state of the spin-(s+ j) triplet, so it must be of
the form

Oss |j, j, α〉 =
∑
β

kαβ |s+ j, s+ j, β〉

for some constants kαβ = 〈s+ j, s+ j, β|Oss |j, j, α〉. Then, by applying the
lowering operator (using the same coefficients we remember from our experience
with decomposing tensor product states), we can write out the rest of the spin-
(j + s) irrep in terms of the basis states and those kαβ . We could then examine
the orthogonal space, and write out the spin-(j + s − 1) irrep in terms of the
basis states and a different matrix kαβ .

That is precisely what we’ll do, but first, a bit of notation for those coeffi-
cients. The notation 〈s, j, l,m|J,M〉 indicates the coefficients which come from
this highest weight decomposition of tensor products, specifically the coefficient
of the |s, l〉 |j,m〉 state in writing out the J3 = M state of the spin-J irrep.
These are known as Clebsch-Gordan coefficients.∑

l

Osl |j,M − l, α〉 〈s, j, l,M − l|J,M〉 =
∑
β

kαβ |J,M, β〉 (10)

The left side contains all those Clebsch-Gordan coefficients which come from
group theory, and the right side contains all those kαβ which come from the
specifics of the operator itself.

Step 2: Figure out how this fixes the matrix elements of our operator.
We can then invert the above to solve for our object of interest:

Osl |j,m, α〉 =

l+s∑
J=|l−s|

〈J, l +m|s, j, l,m〉
∑
β

kαβ |J, l +m,β〉
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and take the matrix element

〈J,M, β|Osl |j,m, α〉 = δM,l+m 〈J,M |s, j, l,m〉 kαβ
Step 3: What does it mean? First of all, the δ function clearly just expresses
that J3 values add. Secondly, we remember we got those kαβ from just taking
matrix elements with the highest-weight state in a given irrep, and we had a
different kαβ for each irrep; ie kαβ depends on J , but it has no dependence
on M, l,m. That dependence is all group theory, ie the values of the matrix
elements between different M, l,m can be connected by raising and lowering
operators, and that dependence appears inside the Clebsch-Gordan coefficients.
So, if we know the value of the 〈J,M, β|Osl |j,m, α〉 matrix elements for just one
m+ l of in a given irrep, we can use our Clebsch-Gordan coefficients to calculate
the matrix elements between every other state in that irrep.

That’s worth restating: we can calculate kαβ from any state, and use it to
know the rest of the matrix elements in an irrep. That’s how strong a constraint
the transformation properties place on the operator. In fact, we’ll give the kαβ
a new notation to emphasize this: they are the reduced matrix elements, written
as

kαβ = 〈J, β|Os |j, α〉
Using the new notation, we write out the Wigner-Eckart theorem as

〈J,M, β|Osl |j,m, α〉 = δM,l+m 〈J,M |s, j, l,m〉 〈J, β|Os |j, α〉

4.3 Products of Tensor Operators

As one might expect, the products of tensor operators also transform well. In
fact, the product of two tensor operators transforms just like the tensor product
of two states.

5 Isospin

Is a thing.

6 Roots and Weights

We want to diagonalize as much of an algebra as we can. A subset, {Hi}, of
commuting Hermitian generators which is as large as possible is known as a
Cartan subalgebra. Because the Cartan generators form a linear space, we can
choose a basis in which

Tr(H†iHj) = kDδij , i, j < m

The number, n, of independent generators in the Cartan subalgebra is the rank,
and, when the whole Cartan subalgebra is simultaneously diagonalized in some
representation D, we can write our basis as |µi, x,D〉, where

Hi |µi, x,D〉 = µi |µi, x,D〉

ie µi is the vector of eigenvalues of the state with respect to the Cartan gener-
ators, and x is any other parameter necessary to distinguish the states. The µi
are called weights, and µ is called the weight vector.
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6.1 The adjoint represenation

We will be able to deduce more from the algebra by studying the adjoint rep-
resentation, because in this representation, there is the natural correspondence
between the states generators and the generators themselves. We will write
the state corresponding to any Xa as |Xa〉, enforce linearity αXa + βXb →
α |Xa〉+ β |Xb〉, and choose the scalar product to be

〈Xa|Xb〉 = λ−1 Tr(X†aXb)

where λ is the kD of the adjoint representation.
The algebra acts in a straightforward way upon this representation:

Xa |Xb〉 = |Xc〉 〈Xc|Xa |Xb〉 = |Xc〉 [Ta]cb =

−ifacb |Xc〉 = ifabc |Xc〉 = |ifabcXc〉 = |[Xa, Xb]〉

In this representation, the weights are also known as roots. We see that the
states |Hi〉 will have zero weight vectors, and all states with zero weight vectors
must be in the space of these Cartan states. Other states will have non-zero
weight vectors. Labelling the generators by the roots of their states:

Hi |Eα〉 = αi |Eα〉

Non-degeneracy

Formally, we would need to include another parameter at this point since we
haven’t shown that the roots uniquely label a state. However, this parameter,
like the x in our discussion of SU(2), is a trivial label that would only hang
around for a short while. We’ll show it to be unnecessary soon enough.

6.2 Raising and lowering

Thus
[Hi, Eα] = αiEα

And note that these Ea are not just the Xa relabelled, but rather are some
complex combinations of them selected by the diagonalization of the Hi. So
they are not Hermitian; in fact, by conjugation we see that

[Hi, E
†
α] = −αiE†α

So E†α = E−α.
Since states with distinct weight vectors disagree in the eigenvalue of a Her-

mitian, they must be orthogonal. If we make the |Eα〉 orthonormal, then that
fixes the normalization of the Eα, ie

〈Eα|Eβ〉 = λ−1 Tr(E†αEβ) = δαβ

We see that the Eα are raising/lowering operators of the weight vectors,

HiE±α |µi, D〉 = (µi ± αi)E±α |µi, D〉
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That expression is true regardless of representation, but, in the case of the
adjoint representation, it is particularly important. Since Eα |E−α〉 has zero
weight, it must be a combination of Cartan states, so [Eα, E−α] is a combination
of Cartan generators, ie

[Eα, E−α] = βiHi

where

βi = 〈Hi|Ea|E−α〉
= 〈[E†α, Hi]|E−α〉
= 〈αiE†α|E−α〉
= αiλ

−1 Tr(EαE−α)

= αiλ
−1 Tr(E†−αE−α)

= αi

So
[Eα, E−α] = αiHi (11)

Examining the above commutation relations derived for the E±α, we see
that they are analogous to the J± operators in SU(2).

6.3 SU(2) Sub-algebras

In fact, for every non-zero ±α pair of roots, we have an SU(2) subalgebra with

E± = |α|−1E±α
E3 = |α|−2 αiHi

In general, for any subalgebra, we could decompose the states of the represen-
tation into irreps of that subalgebra. Since we already know all of the SU(2)
irreps, this heavily constrains the representations of our general algebra.

For instance, we can quickly fill in a detail we skipped over earlier, showing
that each distinct root corresponds to exactly one state/generator. By manner
of contradition, assume that there are two states |Eα〉 and |E′α〉, which are,
without loss of generality, orthogonal. Then

〈E′α|Eα〉 = 0 = λ−1 Tr(E′−αEα)

Let {E±, E3} be the subalgebra created with Eα. Since E− |E′α〉 has weight zero,
it is a linear combination of the Cartan states. We could find the coefficients
of the Cartan states, as done above to get Eq. 11, but at the last step, we find
that, rather than having the inner product of Eα with itself, we have the inner
product of Eα and E′α, which is zero by orthogonality. So E− annihilates |E′α〉.

But we also have

E3 |E′α〉 = |α|−2 αiHi |E′α〉 = |E′α〉

so, one one hand, |E′α〉 is a state of E3 = 1. On the other, E− annihilates
|E′α〉. This contradicts our findings about SU(2), so it must be that α uniquely
specifies a state.
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Furthermore, we can show that, if α is a root, then no multiple of it (other
than ±1) is a root. Consider the SU(2) generated by that root. It acts upon the
states {|E±〉 , |E3〉} as the adjoint representation (equivalent to spin-1). Now
we assume by contradiction that kα for some k 6= ±1 is also a root. Then k
must be a half-integer because the E3 value of any state must be a half-integer.

• If k is an integer, than the state |Ekα〉 can be lowered by E− until it equals
|Eα〉, but that is a contradiction because |Eα〉 is already at the top of our
spin-1 irrep.

• If k is an half odd integer, then there is a state with root β = α/2, but
then there is a root β and a root 2β, which is disallowed by the previous
case.

6.4 Constraining the roots

In any representation D, the E3 value of a weight is

E3 |µ, x,D〉 =
αiµi
α2
|µ, x,D〉

Since, for a given root α, we can decompose the representation into SU(2)
irreps, and since a weight is an eigenvector of E3, we can write an arbitrary
|µ, x,D〉 as a sum of states with the same E3 value, and each with a definite
spin value. Let the highest spin value be j.

We could raise the state p = j − αiµi
α2 times to annihilate it. Or we could

lower it q = αiµi
α2 + j times. Combining these, we get the “master formula”:

αiµi
α2

= −p− q
2

(12)

This formula is particularly powerful in the adjoint representation, because, if
we consider two roots, α and β, and apply the formula to both, we find

αiβi
α2

= −p− q
2

,
βiαi
β2

= −p
′ − q′

2

Combining the two
(α · β)2

α2β2
=

(p− q)(p′ − q′)
4

so the angle between α and β is

cos2 θαβ =
(p− q)(p′ − q′)

4
(13)

This is an incredible constraint on the roots, because (p−q)(p′−q′) is an integer!
And for equality, it must also be between 0 and 4, inclusive. If (p− q)(p′ − q′)
is 4, then α = ±β, which is trivial. The other solutions are

(p− q)(p′ − q′) θαβ
0 π/2
1 π/3 or 2π/3
2 π/4 or 3π/4
3 π/6 or 5π/6
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7 SU(3)

Decomposed the adjoint representation in My All/Projects/RepTheory/SU(3).nb

8 Simple Roots

8.1 Positivity

To generalize our procedure from SU(2), we need a notion of positivity for the
weights (so we can talk about raising and lowering unambiguously). The simple
definition we will use is that the sign of the weight vector is the sign of its first
non-zero entry. This choice is clearly basis dependent, but we will show later
that our results are not.

We can then order the weights:

µ > ν ⇐⇒ (µ− ν is positive)

8.2 Simple Roots

The roots of a generic algebra are not linearly independent. We define the
simple roots as positive roots which cannot be built from other positive roots.
We shall see that, from these roots, we can reconstruct the entire algebra. The
following properties are key:

1. If α and β are two different simple roots, then α−β is not a root. We see
this by contradiction: Say α is larger. Then β = (α− β) + (α) is a sum of
two positive roots, which contradicts our assumption.

2. Because α− β is not a root:

E−α |Eβ〉 = E−β |Eα〉 = 0

We can’t lower either state with the other operator, so, in applying the
master formula 12, the q for both is zero. Hence

α · β
α2

= −p
2
,

α · β
β2

= −p
′

2

Knowing p and p′ is equivalent to knowing the angles between and relative
lengths of the roots since

cos θαβ = −
√
pp′

2
,

β2

α2
=

p

p′

3. The cosine is negative (α · β is negative), so

π

2
≤ θαβ < π

(The strictness of the latter inequality follows by construction because all
simple roots are positive.)
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4. The simple roots are thus linearly independent: consider a sum

γ =
∑
α

kαα

If all the coefficients are of the same sign, than this cannot vanish, because
the value first non-zero entry grows monotonically as terms are summed.
But if there are kα of different signs, we can break the sum up:

γ = µ− ν, µ =
∑
kα>0

kαα, ν =
∑
kα<0

(−kα)α

where µ and ν are both positive. Since

γ2 = µ2 + ν2 − 2(µ · ν) > µ2 + ν2 > 0

we see again that γ cannot vanish. (The above holds because µ · ν is a
sum of the dot products of simple roots, which we showed are all negative
quantities.) So the roots are independent.

5. We can thus write any positive root φ as a positive sum of simple roots:

φ =
∑
α

kαα, kα > 0

(If φ is simple, this is trivial. If φ is not, then it can be written as a sum
of two other positive roots which must be smaller, so one could continue
down until one arrives at a sum of only simple roots.) In a second we’ll
see that these kα must be positive integers.

6. Every positive, non-simple root is the sum of a root and a simple root.
By contradiction, assume this does not hold for φ. Then E−αφ = 0 for
all simple α (otherwise there would be a state to which we could apply
Eα to get a state with weight φ, and we would have our sum). So this
φ must transform like some combination of the lowest weight states in all
the SU(2) algebras, so it’s E3 values α · φ/α2 must be negative for all α.
But since φ can be written as a positive sum of simple roots, we have

φ2 =
∑
α

kαα · φ ≤ 0

which is a contradiction. This in turn implies that the kα in the previous
point are integers.

7. The simple roots are also complete. Otherwise there would be some vector
ξ orthogonal to all the simple roots, so

for all φ, [ξ ·H,Eφ] = 0

but since ξ · H also commutes with the generators, it commutes with
the whole algebra, so the algebra is not simple as we assumed. This
completeness requires that the number of simple roots equal the rank of
the algebra.
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8.3 Constructing the roots

Now we can write out a procedure for inductively determining all of the roots
from the simple roots. All the positive roots can be written φ =

∑
α kαα, with

kα positive integers. Call k =
∑
α kα.

Those roots with k = 1 are simple roots, so we already know them. Now
suppose we have found all the roots with k ≤ l. Since every positive root is the
sum of a positive root (with smaller k) and a simple root, we can find all of the
possible roots with k = l+1 by adding each simple root to all of the k = l roots.
We decide which of those new roots actually exist using the master formula as
follows.

Suppose the k = l root was φ, and we want to determine whether φ + α is
a root. In

α · φ
α2

= − (p− q)
2

we already know the left-hand side. And, because we have all of the smaller
roots, we can see how many times it is possible to lower φ by α, so we know q.
Thus we can find p. If p > 0, then φ + α is a root, otherwise Eα |Eφ〉 must be
zero.

Roots are often shown with a Dynkin diagram as explained at the bottom
of page 111 of the text.

8.4 Constructing the algebra

Now that we have all of the roots, we can determine the entire algebra. We
know the commutation relations between the Cartan generators (trivial) and
the relations between the Cartan generators and the other generators. We just
need to find the relations among those other generators.

For example, suppose we have two simple roots, α and β. If there sum is
not a root, we know they commute, and if their sum is a root, we can find the
relation as follows:

First, we know that |[Eα, Eβ ]〉 = Eα |Eβ〉 must be an (a priori unnormalized)
state with weight α+ β, so it is proportional to |Eα+β〉. Second, we know from
the determination of the roots where |Eβ〉 fits into some α SU(2) irrep, so we
know the normalization N of Eα |Eβ〉. This fixes the proportionality up to a
phase η which we are free to choose:

[Eα, Eβ ] = ηNEα+β

We make some choice of η, and continue this procedure to write each positive
root in terms of commutators of simple roots. Once any generator can be
expressed as a commutator of simple roots, any commutation relation can be
evaluated in terms of commutation relations of simple roots by using the Jacobi
identity.

8.5 Dynkin Coefficients and the Cartan Matrix

In implementing the procedure from Sec 8.3, it is useful to keep track of the
qi − pi value for each state. This quantity is known as the Dynkin coefficient,
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and is, by the master formula, twice the E3 value of the state in the an αi SU(2)
representation. In fact, since

qi − pi =
2αi · µ
(αi)2

and the αi are linearly independent, the Dynkin coefficient contains the same
information as the root vector. Furthermore, the Dynkin coefficients of a general
root φ can be written in terms of its construction:

qi − pi =
2φ · αi

(αi)2

=
∑
j

kj
2αj · αi

(αi)2

=
∑
j

kjAji

Where A is known as the Cartan matrix :

Aji =
2αj · αi

(αi)2

It’s easy to see that the diagonal elements of A are all 2’s, and the off-diagonal
elements record the angles/relative lengths of the simple roots. The j-th row of
A is the Dynkin coefficients for the simple root αj .

When building up all the roots, we just track the Dynkin coefficients and
every time we add root αj , the Dynkin coefficients of the new root are those of
the old root plus those of αj . And since we know the q value from what has
already been constructed, we know the p value from the Dynkin coefficient.

Note: the following two rules are generally required to get the pi and qi for
the simple roots: (1) the pi value of αi is zero since 2αi cannot be a root and
(2) the qi value of αj where i 6= j is zero since αj − αi is not a root.

Of course, all of the above is equivalent to just thinking about what SU(2)
representation each state will have to fit into since the Dynkin coefficents are
just twice the E3 values.

8.6 Fundamental Weights

The highest weight µ in a representation must be annihilated by all of the
positive roots. Since a positive root can be expressed as a multiple commutator
of simple roots, we can just say all of the simple roots must annihilate the
highest weight of a representation.

∀j, Eαj |µ〉 = 0

in fact, since we can construct an entire irrep by applying lowering operators,
the above is an if and only if.

The Dynkin coefficients lj of µ must be nonnegative. In fact, every set of lj

gives a µ which is the highest weight of some irrep. It is useful to consider the
fundamental weights µj which satisfy

2αj · µk

(αj)2
= δjk
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that is, the vector µk yields Dynkin coefficients with lj = δjk. The irreps formed
by lowering the fundamental weights are called fundamental represenations, of-
ten written as Dj .

Uniqueness and completeness of the fundamental weights

Note: these are unique because of the completeness of the αj . That is, the
defining equation requires that each µk is orthogonal to m− 1 of the αj , which
fixes the direction of each. And the δ normalization then fixes the magnitude
of each.

Furthermore, these must be linearly independent: assume there are some
coefficients βk such that

∑
k β

kµk = 0. Then

∀j, 0 =
∑
k

αj · βkµk

(αj)2
=
∑
k

βkδjk = βj

so the βj are all 0, so our µk are independent. (And, since there are m of them,
they are complete.)

Then any highest weight can be written

µ =
∑
j

µj lj

And we can find a representation with that highest weight by taking a tensor
product of l1 copies of the D1 representation with l2 copies of the D2 represen-
tation, etc. This will, in general be reducible, but we can find the µ irrep by
just lowering that highest weight state.

8.7 Trace of a generator

The trace of a generator of any representation of a compact simple Lie group is
zero. since the trace is invariant under similarity transforms, we can just prove
this in our standard weight basis:

• All of the raising operators Eα have trace zero because there are no diag-
onal elements.

• Using the completeness of the αj , the generators Hi can be written as
linear combinations of αj · Hj . But αj · Hj is proportional to an SU(2)
E3, which, by its symmetry about 0, is traceless.

9 More SU(3)

By example, of SU(3), this chapter further discusses the construction of the
representation.
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9.1 Constructing the states

Following the highest weight procedure, we know that all states in the irrep can
be written

Eφ1Eφ2 . . . Eφn |µ〉
where the φi are roots. But, if any of those φi are positive roots (ie raising
operators), then we could commute them rightward (picking up factors having
to do with the weights) until they annihilate the |µ〉, so we know we can actually
capture all the states using only negative φi. And since the roots can be broken
into simple roots, we further write it

E−αβ1E−αβ2 . . . E−αβn |µ〉

where the αβi are simple roots. From the above form, we see clearly that the
highest weight state in an irrep is unique. Furthermore, any weight which can
only be acheived via one ordering of the lowering operators is unique (that is,
any weight for which there is only one path connecting it to µ).

As for the weights which can be acheived by multiple orderings, how do we
determine their uniqueness or degeneracy? Well, with every state written out
in this form, it’s easy to evaluate inner products via the commutation relations.
And taking the inner products allows us to determine whether two states are
linearly dependent (ie compare 〈A|B〉 〈B|A〉 against 〈A|A〉 〈B|B〉 and invoke the
Cauchy-Schwartz inequality).

9.2 Weyl group

Because SU(2) is symmetric about 0, if µ is a weight, than µ− (qi−pi)αi is also
a weight. Doing this for all weights at the same time has a simple geometric
interpretation:

µ− (qiµ − piµ)αi = µ− 2αi · µ
(αi)2

αi

The component along αi is inverted, so this is just a reflection across the hy-
perplane perpendicular to αi. This set of reflections (one for each αi) in the
weight space takes the weights to themselves, so it generates a symmetry group,
known as the Weyl group of the algebra. This sort of symmetry is hinted at by
all those hexagonal and triangular plots of roots we keep seeing.

9.3 Complex Conjugation

In the case of SU(3), it turns out that our two fundamental representations have
roots which are the negatives of each other. This means the two representations
are related by complex conjugation.

Consider the generators Ta of a representation D, with their commutation
relations

[Ta, Tb] = ifabcTc

Since this can be rewritten

[−T ∗a ,−T ∗b ] = ifabc(−T ∗c )

we see that the objects −T ∗a generate a representation D of the same algebra
(called the complex conjugate of the original representation).
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