
1 Measurement

1.1 General Measurements

A general measurement is described by a collection of measurement operators
{Mm} such that

p(m) = 〈ψ|M†mMm |ψ〉
The state after measurement is

Mm |ψ〉√
p(m)

And the operators satisfy a completeness∑
m

M†mMm = I

1.2 Projective Measurement

A projective measurement is a special case of the above, in which the masure-
ment can be interpreted as measuring the value of some observable quantity (of
only the system in question).

An observable (Hermitian operator) H can be decomposed H =
∑
m hmPm,

where the Pm are projectors and the hm are the relevant eigenvalues. Mea-
surement of the observable can be viewed as a general measurement in which
Mm = Pm, that is the Mm satisfy MiMj = δijMj . This allows one to easily
calculate observable expectation values:

E(H) = 〈ψ|H |ψ〉

The ability to perform projective measurements, when combined with the
ability to enlarge the space and perform unitaries, enables one to perform pro-
jective measurements.

1.3 POVM

Positive-operator valued measurements is a formalism for when we don’t actu-
ally care about the state after measurement. We just compress the M†mMm into
the positive operators Em, and say a POVM is any set of positive {Em} such
that they sum to the identity.

So p(m) = 〈ψ|Em |ψ〉 and
∑
mEm = I. Iff the measurement is a projective

measurement, the Em satisfy EiEj = δijEj (because the Em are just the Pm
themselves).

2 Universal quantum gates

2.1 Errors

E(U, V ) = max
|ψ〉
||(U − V ) |ψ〉 ||

Under this definition, the difference in the probability of any measurement out-
come is less than 2E, and errors add, at worst, linearly as operations are com-
pounded.
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2.2 Acheiving universality to arbitrary precision

Hadamard, CNOT, and π/8 are universal.
First, an arbitary unitary on n qubits can be expressed exactly as a product

of k two-level unitaries (k ≤ d(d − 1)/2). A two-level unitary operates non-
trivially on only two basis states. Note: since d = 2n, this step may require
exponentially many gates in general.

Second, an arbitrary two-level unitary can be written as a sequence of single-
qubit unitaries and CNOT gates.

Finally, an arbitrary single-qubit unitary can be arbitrarily well-approximated
by the Hadamard gate and the π/8 gate. T is a π/4 rotation about ẑ and HTHT
is a π/4 rotation about x̂. Combining them yields a certain irrational rotation
about a certain axis, which can be repeated to approximate any rotation about
that axis. H(HTHT )H is an irrational rotation about an orthogonal axis, and
we can use the result that any single-qubit unitary can be written as a product
Rn̂Rm̂Rn̂ to approximate any unitary.

The Solovay-Kitaev theorem states that any single-qubit unitary can be
approximated with accuracy ε in O(logc(1/ε)) gates. Since errors add, at worst,
linearly, approximating an entire m-gate circuit to ε requires O(m logc(m/e))
operations. Note: m may, in general, depend exponentially on n, so arbitrary
n-qubit unitaries are difficult to approximate.

3 Fourier Transform Algorithms

3.1 Quantum Fourier Transform

The quantum fourier transform is given by

|j〉 → 1√
N

N−1∑
k=0

e2πijk/N |k〉

or, equivalently
N−1∑
j=0

xj |j〉 →
N−1∑
k=0

yk |k〉

where

yk =
1√
N

N−1∑
j=0

xje
2πijk/N

is the classical Fourier transform. It is often convenient to use the product
representation:

|j1, j2 · · · , jn〉 →
1

2n/2

n⊗
l=1

(
|0〉+ e2πij2

−l

|1〉
)

=

(
|0〉+ e2πi0.jn |1〉

) (
|0〉+ e2πi0.jn−1jn |1〉

)
· · ·
(
|0〉+ e2πi0.j1j2...jn |1〉

)
2n/2
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3.2 Phase estimation

The phase estimation procedure estimates the eigenvalue ei2πϕ corresponding
to an eigenvector |u〉 of U . An ancilliary set of qubits is Hadamarded and the

j-th qubit controls an operation U2j upon |u〉, and the phase kicks back onto
that j-th qubit, so at the end of the operation, the ancilliary bits contain

1

2t/2

2t−1∑
k=0

e2πiϕk |k〉

after which, an inverse Fourier transform should give ϕ in the computational
basis.

For ϕ which are not expressible as a t-qubit fraction, this algorithm returns a
close estimate to ϕ‘. Explicitly, if we want ϕ to n bits with probability of success
1 − ε, then we want t = n + dlog(2 + 1/2ε)e auxilary qubits. The runtime will
then be O(t2).

3.3 Order-finding

The order of x modulo N (where x and N are coprime) is the smallest integer
r such that xr = 1 (mod N). Order-finding can be accomplished via phase
estimation upon the following unitary:

U |y〉 = |xy (mod N)〉

For N > y, I otherwise.
(Since Ur |y〉 = |xry (mod N)〉 = |y〉, Ur = 1, so the eigenvalues are r-th

roots of unity). Eigenvectors of U are

|us〉 =
1√
r

r−1∑
k=0

exp

{
−2πisk

r

}
|xk (mod N)〉 (1)

with eigenvalues

exp

{
2πis

r

}
from which one can determine r.

To execute the algorithm, one needs (1) an efficient way to execute U2j ,modular
exponentiation; and, more difficultly, (2) a way to generate the state |us〉, which
would require knowing r! Fortunately, Eq. 1 implies that

1√
r

r−1∑
s=0

|us〉 = |1〉

so preparing |1〉 should give a superposition of estimates ϕ of s/r. From there,
a continued-fractions algorithm can determine r, with various tricks to handle
that s and r may not always be coprime.

Factoring numbers can be reduced, via a bit of number theory, to an order-
finding problem, and voila, RSA is broken.
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3.4 Period-finding

Let f(x) be a function with single-bit output such that f(x+ r) = f(x).
Begin in |0〉 |0〉, and create the superposition:

1√
2t

2t−1∑
x=0

|x〉 |0〉

Apply U to get

1√
2t

2t−1∑
x=0

|x〉 |f(x)〉

Now, since f(x) is periodic, the |f(x)〉 factors group the |x〉 factors into groups
of {x, x+ r, x+ 2r · · · }, so that applying an (inverse) Fourier transform to the x
register will set it into a superposition of computational basis states represent-
ing binary fractions corresponding to integer multiples of 1/r (with amplitudes
modulated by the higher Fourier components of f(x)).

From there, a continued fractions algorithm will calculate r.

4 Searching Algorithms

For searching, we will have an “oracle” U such that U |x〉 |y〉 = |x〉 |y + f(x)〉
where f(x) is the binary answer to “is this a solution?” We will always have
|y〉 = 1√

2
(|0〉 − |1〉), so, using the phase-kickback technique, we will ignore this

space and just write the action of the oracle as U |x〉 = (−1)
f(x) |x〉

4.1 Grover Search

Apply Hadamard to produce an equal superposition |ϕ〉 = 1√
N

∑
x |x〉. Now, if

there are M solutions in the space, and N−M non-solutions, then we can write
|ϕ〉 as a superposition of the equally weighted non-solution vector |α〉 and the
equally weighted solution vector |β〉. In terms of these quantities

|ϕ〉 =

√
N −M
N

|α〉+

√
M

N
|β〉

The Grover iteration (G) proceeds as follows: First, apply the oracle. This
negates the coefficient on |β〉, effecting a reflection over |α〉. Then apply the
operator H⊗n(I − 2 |0〉 〈0|)H⊗n, which effects a reflection over |ϕ〉.

The result is a rotation in the α−β plane by θ where cos θ/2 =
√

(N −M)/N .
Since the initial state is |ϕ〉, which can be written cos θ/2 |α〉 + sin θ/2 |β〉, the
result of applying G k times is cos(k + 1/2)θ |α〉+ sin(k + 1/2)θ |β〉. We would
like to rotate the state to |β〉.

Taylor expanding for M � N , we find θ ≈ 2
√
M/N . So we rotate ∼

(π/2)/θ = π/4
√
N/M times. And we have an angular error of θ/2 =

√
M/N

which gives an error probability of M/N .
We assumed M � N . So long as M < N/2, the O(

√
N) behavior holds as

an upper bound. And for M > N/2, one could either switch to the standard
search algorithm, or, if M is not known, artificially double the search space by
adding another qubit.
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I need to read the Quantum Counting
section and polynomial bounds stuff later.

5 Quantum Operations

5.1 Interaction with the environment

If a quantum system is initially uncorrelated with some environment (ie not
merely separable, but actually a product state), and then some interaction is
allowed, after which this environment is discarded (ie implicitly measured but
result of measurement unknown), we can describe the dynamics as a quantum
operation.

E(ρ) = Trenv
[
U (ρ⊗ ρenv)U†

]
If we choose a basis |ek〉 for the environment space, we can rewrite this trace as

E(ρ) =
∑
k

EkρE
†
k

where
Ek = 〈ek|U |e0〉

This leads to an interpretation of the Ek: each EkρE
†
k is the unnormalized state

of the system if the environment was left in state |ek〉 afterwards. Summing
over all the possible environment states (tracing out the environment) gives the
expectation state of the system.

We can generalize this to deal with the case of explicit measurement on the
environment (ie where the experimenter does have access to the result). If we
include a projective measurement {Pm}, and the measurement result is m, then
the final state is

TrE
(
PmU(ρ⊗ σ)U†Pm

)
Tr (PmU (ρ⊗ σ)U†Pm)

If we define Em equal to the numerator, then the final state is Em (ρ) /Tr (Em (ρ)).
Tr (Em (ρ)) is not 1, but rather the probability of measuring m. If we decompose
the environment state σ =

∑
j qj |j〉 〈j|, this can be put into an operator-sum

representation

Em (ρ) =
∑
jk

EjkρE
†
jk

where
Ejk =

√
qj 〈ek|PmU |j〉

(Note that the multiple indices on the Ejk are due to the generalization to allow
the environment to be in a mixed state, not due to the measurement.)

5.2 Axiomatic definition

A quantum operation E : Q1 → Q2 could be defined by three axioms.

1. Since Tr E (ρ) is the probability that E occurs, 0 ≤ Tr E (ρ) ≤ 1.

2. E (
∑
i piρi) =

∑
i piE (ρi)
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3. E is completely positive. That is, not only is E(A) positive for any positive
A on the system, but (I ⊗ E) (A) is positive for any positive A on the
tensor product of the system with any other space. The classic example
of a positive but not completely positive map is the transpose.

If a map satisfies the above criteria, it can be written in the operator-sum
notation, and vice-versa.

There is also a unitary freedom/redundancy in the operator-sum represen-
tation worth mentioning. If {Ek} form a quantum operation, and U is unitary,
than Fk =

∑
j UkjEj is the same quantum operation. This can be used to show

(see write-up for Exercise 8.10) that the operator-sum representation need not
contain more than d2 terms where d is the dimension of the quantum system.
(In the case of a mapping from a d-dimension system to a d′-dimension system,
the mapping needs no more than dd′ terms).

5.3 Trace and Partial Trace

The trace is a quantum operation from a d-dimensional space to a 1-dimensional
space:

E (ρ) =

d∑
i=1

|0〉 〈i| ρ |i〉 〈0|

The partial trace from QR to Q is also a quantum operation:

Ei

∑
j

λj |qj〉 |j〉

 = λi |qi〉

Or, bizarrely written:
Ei = 〈iQ|

5.4 Geometric Picture

Any quantum operation can be written as an affine map on the Bloch sphere
representation:

⇀
r
E→M

⇀
r +

⇀
c

where M can be decomposed M = OS, O ∈ SO3, S real symmetric. So every
quantum operation on a single qubit is a scaling, followed by a proper rotation,
followed by a shift.

This picture makes many facts geometricly visualizable. For instance, the
purity Tr ρ2 can be written as

(
1 + |r|2

)
/2. So if an operation always shrinks

the Bloch vector, it reduces the purity.

5.5 Specific Channels

5.5.1 Flipping

The bit-flipping channel flips the qubit with probability 1−p. It can be expressed

E0 =
√
pI E1 =

√
1− pX
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It compresses the Bloch sphere along the y − z plane, leaving |+〉 and |−〉
untouched.

The phase flip channel which probabilistically flips the phase acts analo-
gously (replace X with Y ). It shrinks the x− y plane.

The bit-phase flip channel (replace X with Y acts analogously), shrinking
the x− z plane. The name makes sense because Y = iXZ.

5.5.2 Depolarizing

The depolarizing channel does nothing with probability 1−p, and depolarizes the
qubit–replaces it with I/2–with probability p. This can be written in operator-
sum form as

E (ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ)

5.5.3 Amplitude Damping

Amplitude damping models the dissapation of energy from a quantum system
to its environment. One can derive it, for instance, by modelling the interaction
of an optical qubit with its (initially empty) environment as a beamsplitter.
(γ = sin2 θ describes the strength of the beamsplitter).

E0 =

[
1 0
0
√

1− γ

]
E1 =

[
0
√
γ

0 0

]
Notice that the only state left invariant (for non-trivial γ) is |0〉. This is because
we modelled the environment initially empty (zero-temperature). One could
model a finite-temperature environment with Generalized Amplitude Damping:

E0 =
√
p

[
1 0
0
√

1− γ

]
E1 =

√
p

[
0
√
γ

0 0

]
E3 =

√
1− p

[√
1− γ 0
0 1

]
E1 =

√
p

[
0 0√
γ 0

]

I need to go back and write up the quan-
tum process tomography stuff

5.5.4 Phase Damping

The phase damping channel, which provides random phase kicks is equivalent
to a phase-flipping channel.

6 Distance Measures for States

6.1 Classical Measures

6.1.1 Trace distance

D(px, qx) =
1

2

∑
x

|px − qx|
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Trace distance has a nice physical interpretation as the difference in probability
of an event S between the distributions q and p, where S is the subset of x’s
which maximize that difference (in some sense, S is the best event for distin-
guishing q and p). Explicitly:

D(px, qx) = max
S

(p(S)− q(S)) = max
S

(∑
x∈S

px −
∑
x∈S

qx

)

(This can be easily shown by collecting all the x’s into S for which px > qx)
This also makes it very simple to prove that the trace distance is actually

a metric. From it’s definition, it’s clearly symmetric, and zero iff p = q, and,as
for the triangle inequality, the above lemma guarantees there is an S such that
the following logic holds:

D(px, qx) = p(S)−q(S) = (p(S)−w(S))+(w(S)− q(S)) ≤ D(px, wx)+D(wx, qx)

Note: N&C did not put this quick proof in, but they proved it for the quantum
case, and that proof was strikingly analogous to this classical case.

6.1.2 Fidelity

The fidelity is the inner product of
√
px and

√
qx.

F (px, qx) =
∑
x

√
pxqx

6.2 Quantum Measures

6.2.1 Trace Distance

D(ρ, σ) =
1

2
Tr |ρ− σ|

where |A| =
√
A†A is the positive square root of A†A.If ρ and σ commute, then

they can be simultaneously diagonalized and this will reduce to the classical
trace distance.

Conveniently, for qubits, the trace distance between two states is half the
Euclidean distance between their Bloch vectors. Also, the trace distance is
clearly invariant under unitary transformations.

We can generalize our maximization expression from the classical trace dis-
tance to the quantum case:

D(ρ, σ) = max
P

Tr (P (ρ− σ))

The proof of this relation is analogous to that of the classical statement. It
uses a trick which is quite handy: ρ − σ can be written Q − S where Q and S
are positive operators with orthogonal support. (This trick is analagous to, in
the classical case, carefully grouping the events such that px > qx). Using this
decomposition, we can write

D(ρ, σ) = (Tr(Q) + Tr(S)) /2

But since ρ and σ are both of unit trace, Tr(Q − S) = 0, ie Tr(Q) = Tr(S).
Choosing P to be a projector onto the support of Q attains the maximization
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and the equality. Just as in the classical case, this above lemma makes it easy
to demonstrate that the trace distance is a metric.

A handy physical interpretation is that the quantum trace distance bounds
the classical trace distance achievable by measurements:

D(ρ, σ) = max
{Em}

D(pm, qm)

where that is a maximization over all POVMs {Em}. Writing the term inside
the maximization as

D(pm, qm) =
1

2

∑
m

|Tr(Em(ρ− σ)|

and using the same decomposition trick, one can see that maximization is at-
tained by choosing the Em to be projectors onto the supports of Q and S.

6.2.2 More properties of trace distance

• Trace-preserving quantum operations are contractive:

D(ρ, σ) ≥ D(E(ρ), E(σ))

• Strong convexity:

D(
∑
i

piρi,
∑
i

qiσi) ≤
∑
i

piD(ρi, σi) +D(pi, qi)

which also implies joint convexity:

D(
∑
i

piρi,
∑
i

piσi) ≤
∑
i

piD(ρi, σi)

and convexity in either argument:

D(
∑
i

piρi, σ) ≤
∑
i

piD(ρi, σ)

6.2.3 Fidelity

The fidelity is defined as

F (ρ, σ) = Tr
√
ρ1/2σρ1/2

In the case where one state is pure,

F (ρ, |ψ〉 〈ψ|) =
√
〈ψ| ρ |ψ〉

The fidelity is also invariant under unitary transformations.
Uhlmann’s theorem gives a beautiful expression for the fidelity. Suppose ρ

and σ are two states of Q. If we introduce a second quantum system which is a
copy of the first,

F (ρ, σ) = max
|ψ〉,|ϕ〉

|〈ψ|ϕ〉|
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where the maximization runs over all purifications of ρ and σ. The proof relies
two neat properties of entanglement. First, a purification of ρ can be written

|ψ〉 = (UR ⊗
√
ρUQ) |m〉

where |m〉 is a maximally entangled state. Second, if the indices in the two
quantum systems are choosen to match, then we can use

Tr(A†B) = 〈m| (A⊗B) |m〉

where the multiplication on the left can be well defined by matrix multipli-
cation in our choosen bases defined by the indices. Using those properties of
entanglement, and one simple property of the trace-absolute value:

|Tr (AU)| ≤ Tr |A|

we can easily prove Uhlmann’s theorem, and, in fact, if either of the purifications
is actually fixed, the statement still works as a maximization over the other
purification.

Based on Uhlmann’s theorem and on the definition itself, we can easily see
that the fidelity ranges from 0 to 1, only acheiving those values when (0) the
states have orthogonal support or (1) are equal.

Just as we linked the quantum and classical trace distance via measurement,
we do the same for fidelity

F (ρ, σ) = min
{Em}

F (pm, qm)

where pm = Tr (Emρ), and qm = Tr (Emσ).

6.2.4 Properties of the fidelity and the angle

The fidelity is not a metric; however, it naturally defines one. Viewing the
fidelity as the inner product between purifications suggests we could define the
angle between states ρ and σ as

A(ρ, σ) = arccosF (ρ, σ)

One can use Uhlmann’s theorem to quickly prove this is a metric.
The fidelity acts like an “upside-down” trace-distance, and obeys many anal-

ogous properties.

• The fidelity is non-decreasing under trace-preserving quantum operations:

F (E(ρ), E(σ)) ≥ F (ρ, σ)

• The fidelity obeys what we refer to by analogy as strong concavity:

F

(∑
i

piρi,
∑
i

qiσi

)
≥
∑
i

√
piqiF (ρi, σi)

which implies joint concavity:

F

(∑
i

piρi,
∑
i

piσi

)
≥
∑
i

piF (ρi, σi)
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and concavity in either argument:

F

(∑
i

piρi, σ

)
≥
∑
i

piF (ρi, σ)

6.2.5 Relationship between distance measures

For many purposes, the fidelity and trace distance are qualitatively equivalent
means of characterizing the distance between states. For pure states, they are
entirely equivalent; simply geometry shows that

D(|ϕ〉 , |ψ〉) =
√

1− F (|ϕ〉 , |ψ〉)

From this, we can deduce their relationship on mixed states. For any ρ and
σ, consider the purifications which satisfy Uhlmann’s theorem. Upon those
purifications, the fidelity will be the same as on ρ and σ by construction, but
the trace distance will be greater or equal. Using that, and the above expression
for pure states:

D(ρ, σ) ≤
√

1− F (ρ, σ)

So a large fidelity implies a small trace distance. The converse can also be shown
true, such that we can bound the trace distance:

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F (ρ, σ)2

6.2.6 How well do channels preserve quantum information

We can use these distance measures to quantify how well an operation preserves
a state. (For convenience, we will work with the fidelity.)

We could say that an operation E preserves |ψ〉 if F (|ψ〉 , E (|ψ〉 〈ψ|)) ≈ 1, or
we could quantify the worst-case behavior of an operation via

Fmin(E) = min
|ψ〉

F (|ψ〉 , E (|ψ〉 〈ψ|))

(That maximization over pure states is equivalent to a maximization over all
states because of the concavity of the fidelity). Similarly, we could quantify how
well an operation acheives any intended gate with the gate fidelity:

Fmin(E) = min
|ψ〉

F (|ψ〉 , E (|ψ〉 〈ψ|))

Whatever metric, d, that we’re using, we can define the error E

E(U, E) = max
ρ

d(UρU†, E(ρ))

So long as d satisfies d(ρ, σ) = d(UρU†, UσU†), the triangle inequality will
guarantee that errors add no worse than linearly.

6.2.7 Quantum Information

Here we discuss two possible definitions for a quantum information source in
the relevant measures of preservation.
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First, the ensemble notion: a source is a stream of identical systems whose
states are independent and identically distributed variables from some fixed set
{ρi} of states with probabilities pi. The ensemble average fidelity is defined as

F̄ =
∑
j

pjF (ρj , E(ρj))
2

where the squared-ness is justified only by convenience at this point.
A second is the entanglement fidelity. If the system under discussion is Q, we

introduce a fictitious environment R such that the state of RQ is a purification,
and define the entanglement fidelity as

F (ρ, E) =F (RQ,R′Q′)2

= 〈RQ| [(IR ⊗ E)(|RQ〉 〈RQ|)] |RQ〉

(Because all purifications of Q are related by a unitary transform on R alone, it
doesn’t matter which we choose for evaluating that definition.) One attractive
property of the entanglement fidelity is that it’s easy to calculate, given an
operator-sum representation for E :

F (ρ, E) =
∑
i

|Tr ρEi|2

Of these two notions, the entanglement fidelity is the more stringent measure,
as demonstrated by the following two results:

F (ρ, E) ≤ [F (ρ, E(ρ)]
2

Intuitively, it is more difficult to preserve a state and its entanglement than just
to preserve a state. Secondly, monotonicity of the fidelity under partial trace
and convexity of the entanglement fidelity as a function of ρ imply that

F (
∑
j

pjρj , E) ≤ F̄

So if an operation preserves the entanglement fidelity of a source described by
ρ =

∑
i piρi, then it will automatically do a good job of preserving ensemble

average fidelity.
Five easily-provable properties of the entanglement fidelity are promised to

come in handy later:

1. 0 ≤ F (ρ, E) ≤ 1. Obvious from definition.

2. F is linear in E . Obvious from definition.

3. For pure states,
F (|ψ〉 , E) = F (|ψ〉 , E(|ψ〉 〈ψ|))2

4. F (ρ, E) = 1 iff E acts as the identity upon the support of ρ.

5. If 〈ψ| E(|ψ〉 〈ψ|) |ψ〉 ≥ 1− η for all |ψ〉 in the support of ρ, then F (ρ, E) ≥
1− (3η/2)
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7 Quantum Error Correction

I already wrote up the section on the three-
qubit flip code and phase code and the
nine-qubit Shor code for 8.06, so I won’t
do so again here. . . for now

7.1 General Theory of QEC

A code C is a subspace. A code is error-correcting against the quantum opera-
tion E if there is a trace-preserving quantum operation R such that

(R ◦ E)(ρ) ∝ ρ

for any ρ supported by C. The proportionality in place of an equals allows E to
be non-trace-preserving.

If P is the projector onto C, and {Ei} represent E , then the existence of
such an R is equivalent to the following error correcting condition:

PE†iEjP = αijP

for some Hermitian matrix α. The equivalence proof is quick and intuitive.
A certain unitary will diagonalize α; if that unitary is used to recombine the
operation elements of E (remember their unitary freedom) into {Fk}, then we
can write

PF †kFlP = dklP

where d is diagonal. A polar decomposition of FkP = Uk

√
PF †kFkP =

√
dkkUkP

shows that Fk just rotates the code into the image UkP , whereas the diagonal-
ity of d makes these spaces orthogonal. Then we just apply U†k to each image
subspace to recover.

R(σ) =
∑
k

U†kPkσPkUk

The other direction of the equivalence follows from the observation that the
combination of the error and recovery on PρP is proportional to PρP .

It is simple to show from the error correcting condition that if R and C
correct an error process with elements {Ei}, then they correct any error process
with elements formed from other linear combinations of the {Ei}. Thus we can
talk about the space of error operations which are corrected for by a given code.

As an example, if a code corrects against the Pauli matrices on one particular
qubit, then it corrects against arbitrary errors on that single qubit. (So it suffices
to show that a code corrects against the depolarizing channel.)

7.2 Degeneracy and the Quantum Hamming Bound

One uniquely quantum aspect of error correction is the phenomena of degenerate
codes. For instance, in the Shor code, Z1 and Z2 both map the code onto the
same error space, and reapplication of either will correct the error, whereas with
classical codes, no pair of errors on different bits would ever lead to the state.
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Intuitively, degeneracy might lead to quantum codes that could store infor-
mation more compactly than any non-degenerate code; however, no such case
has yet been found.

For non-degenerate codes, we can construct a simple bound on how many
qubits are necessary for the encoding, just by counting.

Suppose a non-degenerate code encodes k qubits onto n qubits, and can
correct arbitrary errors on t ≤ n qubits.

Remember that being able to correct for the Pauli matrices on a qubit implies
arbitrary error correction for that qubit. If j errors occur, they may occur in(
n
j

)
possible locations and each may be one of three possible errors. So there is

a total of
t∑

j=0

(
n

j

)
3j

possible errors. By non-degeneracy, each error gets its own 2k-dimensional space
of the 2n-dimensional space of possible states. So by counting,

t∑
j=0

(
n

j

)
3j2k ≤ 2n

This is the quantum Hamming bound.

8 Detour: Classical linear codes

A linear code C, which encodes k bits into an n-bit code is represented by an
n× k generator matrix G of ones and zeros with linearly independent columns,
which maps messages to their encoded forms x → Gx. While a general code
would require n2k bits to specify, a linear code requires only the nk bits of the
matrix.

Complementary to the the generator matrix is the (n− k)× n parity check
matrix H with linearly independent rows, whose k-dimensional kernel is the
code. By Gaussian elimination, any parity check matrix can be put into stan-
dard form [A|In−k], with A an (n−k)×k matrix. The corresponding generator

matrix is annihilates H from the right: G =
[
Ik
−A

]
.

The parity check matrix makes syndrome measurement trivial. If an error
takes y → y′ = y + e, then Hy′ = He, and H acts invertibly on the space of
errors because it has linearly independent rows.

Let the Hamming distance d(x, y) between two words be the number of bits
at which those words differ, and let the Hamming weight of x is wt(x) = d(x, 0).
It follows that d(x, y) = wt(x+y). If the probability of a bit flip is less than 1/2,
then the most likely correction to a corrupted word is the nearest in Hamming
distance. Thus a code with a minimum Hamming distance of 2t+ 1 can correct
errors on up to t bits.

One more construction is promised to come in handy. If C is a [n, k] code
(with generator G, parity check H), then the dual of C, written C⊥ is the code
with generator H⊥ and parity check C⊥. It’s simple to show that the dual
code is simply the subspace orthogonal to C. Weakly and strongly self-dual are
C ⊆ C⊥ and C = C⊥, respectively.
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9 Calderbank-Shor-Steane codes

We can actually now form a quantum code from two classical codes. Suppose
C1 and C2 are [n, k1] and [n, k2] classical codes, with both C1 and C⊥2 correcting
t errors and C2 ⊂ C1.

We now define the quantum code CSS(C1, C2). It is the space spanned by
the states |x+ C2〉, where

|x+ C2〉 =
1√
|C2|

∑
y∈C2

|x+ y〉

It’s easy to see that each coset of C2 in C1 produces one unique vector of
the code, so the dimension is the number of cosets |C1| / |C2| = 2k1−k2 so
CSS(C1, C2) is an [n, k1 − k2] code. N&C steps through the error correction
procedure for this code.
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