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We implement several classic algorithms to characterize the possibility for quantum computation
on MIT Junior Lab’s Nuclear Magnetic Resonance Spectrometer: the CNOT logic gate, the Deutsch-
Jozsa algorithm, and the Grover search. Results demonstrate that basic computations with fidelities

on the order of 70% are possible.

I. INTRODUCTION

The idea of quantum computing is to store and ma-
nipulate information contained in quantum mechanical
systems, rather than macroscale objects. This allows for
fundamentally new means of computation, employing al-
gorithms which make use of intrinsically quantum me-
chanical effects such as superposition (which allows for
massive parallelism) and entanglement (which expands
the computational space exponentially).

Among the many implementations proposed (optical
circuits, trapped ions, nitrogen-vacancy centers, super-
conducting circuits, etc), here we probe the plausibility of
Nuclear Magnetic Resonance quantum computing, which
has the advantages of long coherence times (on the order
of seconds) and requires only an already-developed plat-
form (commerical NMR systems have long been in use in
chemistry and medicine).

II. APPARATUS

This experiment is performed on a Bruker Avance 200
NMR Spectrometer provided by the MIT Junior Lab.
This standard NMR configuration is depicted in Figure
1. The sample is contained within a strong magnetic
field (defining %), wrapped by a solenoid which allows the
computer to (1) apply RF pulses of orthogonal magnetic
field, and (2) read out the oscillating free induction decay
(FID) of the nuclei after such a pulse sequence. The
sample is a solution of *CHCls, where the qubits are
the spins of the hydrogen and carbon nuclei.

The FID is supplied to the software in a complex
represenation wherein the real part gives the magne-
tization along the z direction and the imaginary part
gives the magnetization along y (both in the rotating
reference frame of the nuclei [2]). The complex FID is
Fourier transformed to produce the peak spectra depicted
throughout this paper (see, for instance, Figure 3).

III. THEORY AND COMPUTATION

The first point to notice upon observing Figure 3 is
that the Fourier transform of the FID contains two peaks,
because the usual Lorentzian resonance of each nuclear
magnetic spin at the Larmor frequency is split into two
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FIG. 1: The computer gates the signal of an RF
oscillator for each channel, which enables it to send
pulses for each nuclei to the RF coil. The free induction
decay is detected by the same coil and mixed down with
the RF oscillator to be forwarded to the computer.

levels by coupling with the other nuclear spin. (That is,
each nucleus provides some magnetic field at the location
of the other, such that the energy of each nucleus depends
on the state other.) The interaction is described by a
scalar coupling constant J in addition to the standard
NMR Hamiltonian.
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This coupling will prove useful in that it allows for easy
implementation of quantum operations which require one
qubit to affect the other: free evolution for a time 7 =
1/2J results in a conditional 7/2 phase shift between the
nuclei.

Now, in order to deal numerically with these peaks, we
assign a magnitude to each by integration. Because the
peak is theoretically a complex Lorentzian
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whose integral does not converge, we instead integrate
the power spectrum (the norm squared of the spectrum),
and then take the square root. This quantity, which
we hereafter refer to as just the “peak integral” is pro-
portional to the population difference of up versus down
spins [2], so naturally it should have some expression in



terms of the diagonal terms of a two-spin density matrix.
In fact, the correspondence is quite simple,
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Where the left is the density matrix of the two qubits
(convention: carbon is the second qubit and or “fast in-
dex”), and the right column is proportion to the peak
integrals (the two for hydrogen, followed by the two for
carbon). This correspondence means that converting be-
tween peak integrals and density matrices is just a sys-
tem of linear equations (including the constraint that the
trace of a density matrix is 1).

The ability to convert to density matrices is desirable
as it enables us to use the tools of quantum information
science. The device we will find most useful is the fi-
delity, which, ranging from 0 (orthogonal) to 1 (equal),
quantifies how closely some state matches to another [1].
In the case of a pure basis state |i), the fidelity simplies
to the diagonal matrix element (i| p |7).

Error propagation calculations are equally simple.
Two different techniques are used for selecting the re-
gion of integration (fized-width, 15MHz to either side of
a peak, and variable-width, 5 FWHM to either side). Sys-
tematic errors in the procedure are estimated from the
difference of these techniques, and directly propagated
through the linear algebra. Where stated, statistical er-
rors are estimated by obtaining the same spectra multiple
times (nine times for CNOT and nine times for Deutsch-
Jozsa).

As a final note, the notation for a 7/2 pulse in use here
is Rﬁffng, where the letter in the superscript indicates
which nuclei to pulse, and the subscript indicates the axis
of rotation (determined by the phase of the pulse).

IV. CALIBRATION

First the pulse phase is calibrated. As discussed, pulses
are applied with different phases to rotate the spins about
the x and y axes. Since the z and y axes are already
defined by the readout (the z-axis is that which produces
the real component of the FID), the phases of the pulses
should be referenced accordingly.

The procedure for this calibration is simply to apply
what the computer imagines to be an Rg pulse (such
that the spin should be rotated toward the z-axis), and
examine the resulting hydrogen peak. The phase of this
peak is then taken as a phase reference to be subtracted
from all future hydrogen pulses (then the same is done
for carbon).

Since our peak integration analysis for the actual ex-
periment, as discussed, only takes a sign from the peaks,
it is robust against any accidental phase offsets less than
90° (which easily acheived). Thus the precision of this
calibration is thus not relevant to error analysis.

Next, the pulse widths are calibrated. The angle by
which a spin rotates during a pulse is proportional to the
pulse duration (as well as other factors, including pulse
intensity at the sample, to which we do not have direct
access), so pulse widths must be calibrated empirically.

The procedure is to apply pulses along the same axis
(ie R) of different durations, and examine the variation
of the peak integral with duration. This plot should give
a sinusoid whose first maxima is the /2 pulse width (See
Figure 2 for details). Since inaccurate pulse widths result
in poor execution of computations, this vital calibration
is performed at the beginning of every session.

Finally, the duration of free evolution for spin-coupling
should be calibrated. As discussed, the J coupling
constant provides the frequency difference between the
peaks, so a typical double-peaked thermal spectrum such
as that in Figure 3 provides us with a measurement of J.

Additionally, we conduct measurements of 77 (using
the spin-echo delay technique) and Ty (by the width of
the lorentzian peaks), to confirm that these decoherence
processes are longer than the computational timescale.
As they are suffciently long and thus not important, and
there is no space here, we will not discuss this further.
(The companion paper by Zhou has more detail on this
topic for those interested in decoherence rates.) It suffices
to say that T3 is 67+1ms for hydrogen, 120.1+.4ms for
carbon. T5 is 18.6+.3s for hydrogen, 18.0+.4s for carbon.

V. EFFECTIVE BASIS STATES

In room temperature NMR, one always begins with a
thermal distribution of spins rather than the pure state
necessary for quantum computing. A technique known as
temporal labelling is required to produce effective basis
states for initializing NMR computations. While space
prevents a lengthy discussion here, good explainations
can be found in [1] or [2]. Before attempting compu-
tations upon the effective basis states, it is prudent to
evaluate the fidelity of this procedure. The effective |00)
is shown in Figure 4. (Note: From here on, all peak in-
tegrals are normalized to the sum of the magnitudes of
the peak integrals in the effective |00).)

By generating each basis state, converting the peak
integrals to density matrices, and evaluating the fideli-
ties as explained in Computation, we arrive at Table I.
Fidelities of the effective basis states limit how effective
any computation carried out on the basis states will be.

State |00) |01) [10) [11)
Fidelity |.953 £ .005|0.800 £ .004 |.850 % .001|.690 £ .014

TABLE I: Fidelities of effective basis states.
Uncertainties are only the systematics as discussed in
Computation; since multiple time-consuming runs were
not taken for the basis states.
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FIG. 2: Pulse-width calibrations for hydrogen (left) and carbon (right). At each duration, the mean of the two peak
integrals in the spectrum is plotted, and the difference between the two peaks integrals is taken as an uncertainty
(error bars above). A sinusoid is fitted to the curve (x% values provided), and the location of the fitted 7/2 pulse

width is marked by the vertical line.

x10° () (b)
10 ‘ ‘ - i .
J=215.06+/-0.04Hz
c 8
D £
ol ] x
g
5 ‘ ‘ :
J00  -200 0 200 400

Frequency [HZz]

Number of Iteration. k

FIG. 3: (Left) We begin with merely a thermal distribution; shown is a hydrogen spectrum, providing a
measurement of J via the distance between fitted peaks. (Right) However, by the techniques discussed here, we
implement successively more complex algorithms, finally demonstrating the oscillatory behaviour of Grover’s search.
(Every three iterations, another maxima is reached, and we see this continue out to 60 iterations. (Different levels of
iteration were probed over different overnight runs. More detail may be found in the companion paper by Leo Zhou.)
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FIG. 4: Hydrogen (left) and carbon (right) spectra in the effective |00) state generated by temporal averaging.
Ideally all of the power spectrum should be in the left peak, however the temperal averaging appears to be off by
about 6-7%. This will be discussed quantitatively via the use of fidelities.



VI. CONTROLLED-NOT

Controlled-NOT (CNOT) is the most basic quantum
logic gate. On the computational basis, it will flip the
second qubit if and only if the first qubit is 1, so it has
the following representation as a unitary operator:

1000
0100

CNOT= |70 01 (1)
0010

In terms of the pulses discussed thus far, CNOT can
be written RS — Rg — RS — RHE — Rf -7 = Rg.

Demonstration of a high-fidelity CNOT is a com-
mon early step for many different quantum computation
schemes, so it is natural to implement this in our experi-
ment. We apply the above CNOT pulse sequence to each
of the basis states, and record the peak structures.

Three groups of data are plotted for the CNOT anal-
ysis in Figure 5.

1. The first is the ideal CNOT output. These were
obtained by applying the CNOT gate (Eq 1) to the
computational basis. Assuming the basis states are
pure, and the CNOT is implemented perfectly, we
would expect to see the black bars.

2. The white bars are the actual measured outputs.
As we see, they are qualitatively similar to the ideal
outputs, except that the large peaks are reduced
and the peaks that should be zero do show some
noise.

3. The grey bars are what we would expect from an
ideal, noiseless CNOT implementation upon our
imperfect basis states. That is, these were ob-
tained by taking the effective basis density matrices
from Section V, applying the CNOT gate (Eq 1) to
them, and converting the resulting density matri-
ces to peaks. They provide a visual way of deciding
how much error in the calculation can be attributed
to the effective basis and how much to the CNOT
implementation.

As a quantitative means of tracking the errors, we tab-
ulate the fidelities below:

Begin| ]00) |01) |10) [11)
End Fidelity| .766 671 722 .644

+0sys| £ .004 | £ .004 | £.002 | £.002

F0stat | £ .0008| £ .0003 | £.0009 | +.0004

TABLE II: Fidelities for the CNOT computation.
These follow the trend set by the fidelities of the basis
states (Table I), as can also be seen in Figure 5.

VII. DEUTSCH-JOZSA

The first non-trivial algorithm we test is the classic
Deutsch-Jozsa (DJ) algorithm, whose description follows.

There is some mystery function f(z) : Zo — Zo. We
are given an “oracle,” U, which can compute the myste-
rious f in this way:

Ulz,y) = |z,y + f(x))

for any x,y € 0,1. The goal is to determine whether
f(0) = f(1) (f is constant), or f(0) # f(1) (f is bal-
anced). Classically this takes two evaluations of f; to
determine whether f(0) = f(1), one must evaluate f(0)
and f(1). The Deutsch-Jozsa algorithm exploits super-
position to do it with only one evaluation [1].

For our experiment, we employ the following DJ pulse
sequence: R}Q, ng -Uy fR‘S ng . Moreover, there are
four possible functions f(z) : Zo — Za, and we test the
Deutch-Jozsa algorithm on each. We use the following
pulse sequences for the oracles:

(f(x) =x) RSRSRSRERITRS
U = E ;Ex; = (1);5) nggRngRergRgRg
x fry
(f(x)=1) RSRY

Results are presented in Figure 6, which is similar in
nature and interpretation to Figure 5, and in Table III.

flz)=| = 11—z | O 1
End fidelity| .819 | 0.653 | .867 | .845

+osys| £.01 | £.003 [£.004| £.004

+0stat | £ .002|2.0006 | £.004 | £.0007

TABLE III: All Deutsch-Jozsa fidelities are above 80%
but for the f(z) =1 — z, as discussed in Conclusion.

VIII. CONCLUSION

Having now reported on all of the basic algorithms,
one observation worth note is precisely when the fideli-
ties drop the most sharply. After the basis state rotation
from effective |00) (which has 95% fidelity) to any other
state, we see much of the fidelity has already been lost,
(despite this step being only one or two pulses). Ad-
ditionally, the second DJ function shows a much lower
fidelity than any other DJ. What both the basis rotation
and that specific DJ oracle have in common is the pres-
ence of a 180° flip, which is implemented by instructing
the apparatus to supply one long pulse (rather than two
m/2 pulses). Perhaps future experiments may double-
check the validity of the long pulse option.

Nonetheless, we find that basic computations with fi-
delities of 70% are possible on MIT Junior Lab’s spec-
trometer. This is nowhere near the precision required
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FIG. 5: Evaluation of our CNOT gate.
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FIG. 6: Evaluation of our Deutsch-Jozsa implementation.

for arbitrarily long, fault-tolerant computation, but it is
nonetheless a vital demonstration of several basic com-
ponents of quantum computation.

In fact, to test the limits of the apparatus, we attempt
a more demanding computation, Grover’s algorithm, at
various levels of iteration (see Figure 3). Though space
does not permit a full analysis here, we note that oscil-

lations continue beyond k& = 60 iterations, which may
perhaps be a record k in Junior Lab.

In summary we have characterized the performance
of two basic algorithms on an NMR quantum computer
(CNOT and Deutsch-Jozsa), demonstrated the possiblity
of these basic computations at low-fidelity, and stretched
to the limits of what is possible with Grover’s algorithm
on the Junior Lab spectrometer.
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