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We examine the Poisson statistics of gamma radiation using a Cesium-137 source and a pho-
tomultiplier setup. The experimental setup was arranged to provide approximate radiation count
rates of ∼1Hz, ∼5Hz, ∼10Hz, and ∼100Hz; then, for each arrangement, we count gamma ray hits
in 1s intervals and 100s intervals. The resulting data appears strongly Poissonian for the higher
rates. We perform a full statistical analysis, and then suggest sources of error to account for the
discrepancies at the 1Hz level.

Poisson statistics are ubiquitous in the physical sci-
ences, so we will first lay the groundwork with a mathe-
matical discussion of the distribution, before applying it
to gamma radiation.

I. POISSON STATISTICS

The origin of the Poisson Distribution is the binomial
distribution, which arises from the following question:
Suppose we have a series of n independent trials, each
having the same probability p of success. What is the
probability of finding k successes?

For instance, suppose we flip n coins (p = .5), and
count the number k of heads. If we repeat the entire pro-
cedure many times, what is the distribution of k values?
The answer is simply the probabilty of succeeding in k
trials times the probability of failing in n− k trails times
the number of ways of reordering those indistinguishable
successes and failures:

P (k) =

(
n

k

)
pk(1− p)n−k

Intuitively, the mean number of successes is the prob-
ability times the number of trials: µk = np, and the
distribution is peaked around this value.

Now suppose, instead of having n discrete trials with
fixed probability p, we have a continuous procedure with
a fixed mean rate of “successes.” An example of this is
radiation counts from a decay: it is random, but has a
fixed mean rate (assuming the observation time is small
compared to the half-life). We can view this is as a limit
as the number of trials, n, grows to infinity (but keeping
the expected count λ = np finite). Taking this limit on
the binomial distribution yields the Poisson distribution:

P (k) =
λk

k!
e−λ

We will note many useful properties of this curve.

• There is only one parameter, λ, to the distribution.
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FIG. 1: Shown are three Poisson distributions. Notice
that each is peaked near its λ, with a width

proportional to
√
λ. Furthermore, if one measures a

process which is the sum of the processes producing the
first two curves (λ = 4, 11), the result will be described

by the third curve (λ = 15).

• The mean, variance (and, in fact, all higher mo-
ments) are λ.

• If two Poissonian processes (with mean rates λ1
and λ2) contribute counts to an experiment, then
the resulting distribution is also Poissonian, with
mean rate λ = λ1 + λ2.

Examine Figure 1 for examples of Poisson curves. To see
this distribution in nature, we arranged an experiment to
count gamma rays from a radioactive source of Cesium-
137.

II. EXPERIMENTAL SETUP

The radiation from the 137Cs source is detected by an
802 Canberra Scintillation Detector, as depicted in Fig-
ure 2. The detector contains a small crystal of NaI, which
absorbs the gamma radiation and reemits the energy as
visible photons. These photons then interact with a pho-
tocathode in the photomultiplier tube (PMT), releasing
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FIG. 2: Experimental setup for gamma ray detection

a stream of electrons. A (∼ 1kV) potential difference
forces these photoelectrons down the body of the pho-
tomultiplier tube, which consists of a sequence of metal
surfaces at increasing potential. An electron picks up ki-
netic energy as it falls through the potential, so that each
collision with a metal sheet produces more and more freed
electrons, which continue multiplying in this manner un-
til an appreciable current reaches the voltage divider at
the end of the tube.

The signal is then amplified (to the scale of about 3V)
and passed to a discriminator. The discriminator con-
verts any pulse above a given trigger level to a square
bump. Since the height of the original pulse increases
with the energy of the gamma ray photon which set it
off, the selective discriminator passes only events from
gamma rays above some adjustable energy level. The
train of square pulses is then fed to the counter, from
which the experimenter can read off the number of events
in a given interval.

For diagnostic purposes, an oscilloscope monitors the
output of both the amplifier and the discriminator. The
oscilloscope triggers off the discriminator, so that we can
view all of the pulseforms which get counted. When the
source is in place in front of the detector, we see a bold
feature on the oscilloscope, along with a lighter spectrum
of pulses due to background (see Figure 4). The bold
feature disappears when the source is removed, which
suggests that it corresponds to the single γ emission in
the 137Cs decay path (see Figure 3).

III. DATA

We adjusted the discriminator to acheive various ap-
proximate count rates for the experiment: ∼1Hz, ∼5Hz,
∼10Hz, and ∼100Hz. At each desired approximate rate,
we counted gamma ray hits in one hundred 1-second in-
tervals. By running a cumulative average along the one
hundred data points, we can graphically examine how

FIG. 3: Decay path of Cesium-137. Note the single γ
emission at 662keV.

FIG. 4: The radiation spectrum with and without the
source, respectively. Notice that the strong feature

disappears when the source is removed.

our estimate of the mean converges upon its final value.
The red plots in Figure 5 are cumulative averages, that
is, the height of the plot at the n-th point represents
the average, µn, taking into account only the first n tri-
als. The uncertainties are calculated for each point as√
µn/n. On the plot, we see the means converging to fi-

nal estimates with increasing precision, which is precisely
what we should expect for a truly random process.

Additionally, at each desired rate, we ran a single 100-
second interval as another estimate of the mean. If the
count in 100s is c, the mean rate is µ = c/100, with

uncertainty
√

100c/100 =
√
c/100. We can see that the

estimates from the two interval-lengths are consistent;
the greatest difference between means is only 1.5σ (from
the ∼1Hz data).
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FIG. 5: For each desired rate, the running mean (cumulative average) from the 1s trials is shown in red, with the
estimate from the 100s trial overlaid in black. Errorbars calculated as described above.

We also fit the 1s data directly to Poisson curves as
shown in Figure 6. The higher rates are solid fits with p-
values of .86, .84, and .93, while the ∼1Hz data does not
wear the Poissonian well, generating a p-value of .13. We
will discuss what could have affected the low-frequency
data in our sources of error analysis.

IV. ERROR ANALYSIS

Conveniently this experiment is quite robust against
error. If our model is correct, then we would expect
any source of radiation to obey Poisson statistics. And
since Poisson distributions always combine to produce
more Poisson distributions, any background radiation
contributing to our counts will change the mean rate
we measure, but not break the Poisson character of our
measurements. In fact, most sources of systematic error,
eg. uncertainties in apparatus parameters, only change
the mean rates we measure. But actual mean rates are
not the goal of the experiment, and, since we tuned the
experiment to acheive certain desired approximate rates

anyway, these values have no significance.
There is one source of systematic error which could in

principle disturb the distribution. The photomultiplier
tube will have some deadtime after any pulse, during
which it cannot activate another pulse. This effect is ob-
viously a more important concern at higher count rates,
so let us estimate its impact on the 100Hz data. We can
see from the oscilliscope that the timescale for the rise
and fall of a peak is about ∼ 2µs. Over the entire 100
seconds of a run, we expect 100Hz × 100s = 10000 dead
intervals, which yields a total dead time of ∼ 20ms. As-
suming the counts are actually Poisson with mean rate
∼ 100Hz, the expected number of counts in that interval
is 100Hz × 20ms = 2, with an uncertainty ±1.4. So our
estimate of the mean rate (divide by 100 seconds) would
have a systematic bias of about ∼ .02Hz with systematic
uncertainty around ∼ .014Hz. On the scale of 100Hz,
this is already much smaller than our statistical uncer-
tainty, and the effect becames less and less significant at
lower rates. So deadtime is not a serious problem for our
experiment.

As we have discussed, background radiation is not a
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worry–unless the radiation changes during the experi-
ment. If the mean rate of background radiation changed,
that would contribute non-Poisson noise. This is plausi-
ble if radiation came from a mobile source near the ex-
periment, such as, for instance, the experimenters them-
selves. We can estimate the rate of counts from the bod-
ies of the experimenters to determine whether we could
have affected the results. A typical human body contains
[1] about .1µCi of 40K, which corresponds to 3.7 × 103

decays per second. 11% of those, or 400 decays per sec-
ond, emit gamma radiation (at an energy level beyond

our highest discriminator level). Pretending, for ease of
calculation, the the human body is a point source of ra-
diation about .5m from the detector, we can calculate
the solid angle for radiating into a a scintillator crystal
[2] of area (.051m)2, which leads to an expectation of
about .33 counts per second into the detector. This is
on the scale of our smallest measurements (the trouble-
some 1Hz data), so, by moving around during the run, we
could actually have contributed significant non-Poisson
noise, enough to significantly disturb the 1Hz distribu-
tion. Data at higher rates are less afffected.

FIG. 6: Poisson fits for each desired rate.

V. CONCLUSION

In conclusion, we have discussed properties of an in-
credibly common and useful distribution, we have found

that gamma radiation seems to obey this distribution,
and we have come across an interesting source of error in
a standard introductory experiment.

[1] Frame, Paul. General Information about K-40. 20 January
2009. http://www.orau.org/ptp/collection/consumer%
20products/potassiumgeneralinfo.htm.

[2] Detector datasheet: http://www.canberra.com/

products/detectors/pdf/Model-802-SS-CSP0232.pdf
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