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This paper reviews several experiments of microwave cavity quantum electrodynamics in which
quantum non-demolition (QND) measurements of photons played a role. It covers QND first in
single photon fields, then in larger fields, discusses how to determine coherence information, and
finally covers the basic structure of a state preparation feedback loop.

I. INTRODUCTION

Advances in cavity quantum electrodynamics and its
potential for use in optical quantum computing have
greatly increased both the desirability and feasibility of
precise control and measurement of cavity photon fields.
Various techniques already exist for detecting fields to the
precision of a single photon, such as the avalanche photo-
diode, and photomultiplier tube, and there has even been
research on using quantum-dot-based field effect transis-
tors for this purpose [1]. Unfortunately, all these meth-
ods destroy the photons in measurement. However, such
limitations are not fundamental to quantum mechanics.
The techniques of cavity QED combined with atom inter-
ferometry provide an ingenious method of resolving the
photon number of a cavity field without destroying its
projected state.

Quantum non-demolition (QND) measurements, as
such experiments are referred to more broadly, allow one
to track the evolution of an individual realization of a
quantum system. This forms the basis of many poten-
tially useful techniques for both the future of quantum
computing and fundamental tests of quantum physics.
In this paper, we shall discuss the progress in QND ex-
periments, beginning with the QND detection of a sin-
gle photon, and generalize to the determination of larger
photon numbers, discuss phase information, and finally
cover a feedback loop implemented in such systems for
state preparation.

II. QND WITH A SINGLE PHOTON

A. Theory

Before detailing single-photon measurements, it is pru-
dent to mention a common method for optical QND mea-
surements of macroscopic light intensities, as this will
provide an insightful analogy for the discussion. This
method involves two beams: a ‘signal’ beam whose in-
tensity we would like to measure, and an auxiliary ‘me-
ter’ beam. The meter beam is split into two compo-
nents. One component is sent through a non-linear
Kerr medium (a material whose refractive index depends
on light intensity) simultaneously with the signal beam.
The phase shift of the meter beam passing through the
medium then depends on the intensity of the signal beam.

Thus, upon recombining this component of the meter
beam with the other, the resulting interference pattern
will be shifted, and one can determine the signal intensity
[2, 3].

By analogy, for single-photon measurements, we will
simply replace the meter beam and optical interferometry
with single atoms and atomic interferometry [2]. The sig-
nal field represents one mode of an optical cavity, through
which we send one ‘meter’ atom at a time.

The three relevant states of the atom we shall refer to
as |i〉, |g〉, and |e〉 (in order of increasing energy). We will
be injecting atoms in superpositions of |i〉 and |g〉 into a
cavity resonant with the |g〉 ⇔ |e〉 transition.

So an atom in the state |i〉 passes largely unaffected
through the cavity (far off-resonant from every transi-
tion), and an atom in the state |g〉 experiences a Jaynes-
Cummings Hamiltonian (JCH) connecting it to |e〉:

ĤJC = Ĥatom + Ĥfield + Ĥint

=
~ωig

2
σ̂z + ~ωâ†â+

~Ω

2
(âσ̂+ + â†σ̂−)

where Ω is the vacuum Rabi frequency, ω is the atomic
transition frequency resonant with the cavity, the a oper-
ators are photon creation and annihilation, and the Pauli
σ operators act on the atomic states.

If the atom enters in |g〉 and the photon field begins
in the state |0〉, then the interaction term vanishes (be-
cause JCH uses the rotating-approximation, an empty
cavity will not connect |g〉 to |e〉), and the atom is unaf-
fected. However, if the atom enters in the state |g〉 and
the photon field begins in the state |1〉, the atom will un-
dergo vacuum Rabi oscillations |g, 1〉 ⇔ |e, 0〉. The state
of the atom-field system will thus be given by

cos(Ωt/2) |g, 1〉+ sin(Ωt/2) |e, 0〉

As can be read from the above expression, if the inter-
action time with the cavity is 2π/Ω, then the atom com-
pletes a full Rabi oscillation back to |g〉, having absorbed
and reemitted the photon, but in the process the state
has picked up a phase factor of −1. Thus we have cou-
pled the photon number of the cavity to the phase of the
atomic state, without changing the photon number.

Before continuing, let us recapitulate the effect which
we just derived that the interaction has on the following
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initial states:

|i, 0〉 → |i, 0〉
|i, 1〉 → |i, 1〉
|g, 0〉 → |g, 0〉
|g, 1〉 → − |g, 1〉

We can measure this phase shift via the following Ram-
sey interferometry scheme [2]. First, a π/2 pulse at fre-
quency ν, near resonant with the |i〉 ⇔ |g〉 transition,
prepares, from atoms in |i〉, the superposition

|i〉 → |+〉 =
1√
2

(|i〉+ |g〉)

Then the atom passes through the cavity, and undergoes
the aforementioned Rabi evolution: it will flip the phase
of the excited state if the photon number is one, and
have no effect if the photon number is zero. (Let us refer
to the phase-flipped superposition as |−〉). Taking the
initial cavity state to be α0 |0〉+ α1 |1〉, we have

|+〉 ⊗ {α0 |0〉+ α1 |1〉} → α0 |+, 0〉+ α1 |−, 1〉

Subsequently, another π/2 pulse (phase coherent with the
first) converts these superpositions back to basis states:

α0 |+, 0〉+ α1 |−, 1〉 → α0 |i, 0〉+ α1 |g, 1〉

Then the atom passes into a state detector, which should
detect |i〉 if the photon number is 0, |g〉 if the photon
number is 1.

FIG. 1: The Ramsey interferometry for single-photon detec-
tion. R1 and R2 are the two Ramsey pulses and C is the
cavity. (a) Schematic and level structure. (b) The atomic
state with no photon in the cavity. (c) The same, with a sin-
gle photon. Also shown are the Ramsey fringes with variation
in ν. Figure from [2].

B. Experimental Considerations

Two further experimental details of this procedure are
worth noting. First, the meter atom is typically prepared
in a circular Rydberg state, that is, one of high principal
quantum number n and maximum orbital and magnetic
quantum numbers (ie l = |m| = n − 1). In the specific
experiment of [2] discussed here, these numbers are n =
49, 50, and 51 for i, g, and e respectively. The reason for
the choice of circular Rydberg states [4] is that they have
large dipole matrix elements (dipole elements scale
as n2), and long lifetimes (since frequency differences
go as n−3 and dipole element goes as n2, the decay rate
goes as (n−3)3(n2)2 = n−5). For [2], the lifetime of e is
30ms.

Secondly, the Stark effect can be used to adjust the
interaction time of the atom with the cavity, instead of
relying on velocity selection alone. Applying a separate
DC electric field across the mirrors of the cavity, one can
fine-tune the atomic transition frequency, choosing the
length of time over which it should be resonant with the
cavity.

With these experimental methods and the previous
theory discussion, we have completed the QND measure-
ment of a single photon.

III. MULTIPLE PHOTON QND

A. Off-resonant interaction

The method described above only works when the
photon field is restricted to n = 0, 1. The

√
n depen-

dence of the photon annihilation operator in the Jaynes-
Cummings Hamiltonian implies that the rate of flopping
between |g〉 and |e〉 in the presence of a photon field which
begins in state n is not in general Ω but rather

√
nΩ. And

thus, the proper interaction time, to guarantee that the
atom exactly absorbs and re-emits the photon depends
on the photon number which we hope to measure, which
makes a non-destructive measurement impossible.

However, there is an different source of phase shift we
can probe. From now on, we shall only require two atomic
states; let us choose |g〉 and |e〉. Should we significantly
detune the cavity by δ = ω − ωeg from the transition
frequency ωeg, then amplitude of Rabi oscillations will be
negligible, such that we can neglect the small probability
of photon absorption. However, the interaction of the
cavity will still Stark shift the energies of the ground
and excited states such that, over the interaction time, a
phase shift will accumulate between the two [2, 5]. This
approach was actually described before the realization of
the single-photon measurement described above, but was
more technically difficult to implement [2].

We can derive this energy shift from second-order per-
turbation theory. If an atom is sent into the n-photon
cavity in state |g〉 such that the total state is |g, n〉, then
it will be strongly coupled to the state |e, n− 1〉 by the
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JCH interaction, since these two states are separated only
by ~δ in energy. The matrix element connecting the two
is ~Ω

√
n/2, so the second-order energy shift, taking into

account only this coupling, is

|Hg,n;e,n−1|2

Ee,n−1 − Eg,n
=

~Ω2n

4δ

Similarly, if an atom enters the n-photon cavity in the
state |e〉, then the total state, |e, n〉, is most closely cou-
pled to |g, n+ 1〉. The energy separation is −~δ, and the
matrix element is ~Ω

√
n+ 1/2, so the second-order shift

is

|He,n;g,n+1|2

Eg,n+1 − Ee,n
= −~Ω2(n+ 1)

4δ

Comparing the above results, the perturbed energy dif-
ference between |e, n〉 and |g, n〉 is then

|∆E| = ~Ω2

2δ

(
n+

1

2

)
So if the atom interacts with the cavity for time t, there
will be an accumulated phase difference of

Ω2t

2δ

(
n+

1

2

)
This result we have derived here agrees with the ex-

pression stated in [5]. Felicitously, the phase is linear in

photon number. And, the phase shift per photon Φ = Ω2t
2δ

is adjustable via the detuning (though greater care must
be taken with higher order corrections for smaller detun-
ings compared to the Rabi frequency). We can use the
same Ramsey technique as before to measure this phase
shift.

Note: the trivial part of the phase shift (independent
of n) will be ignored for the remainder of the paper. We
can just assume that the second Ramsey pulse is offset
by Ω2t/4δ so that this term is shifted away. (This is in
addition to any other phase offsets we add to the second
Ramsey pulse in the upcoming section.)

B. Procedure

Suppose we wish to use this method to distinguish be-
tween n = 0 and n = 1 as before. In principle, only one
atom, again, is necessary. The first Ramsey pulse creates
the 1√

2
(|g〉 + |e〉) superposition. We choose δ such that

the phase shift per photon is π. Then the second pulse
converts the unaffected superposition (n = 0) to |e〉 and
the phase-shifted superposition (n = 1) back to |g〉. We
recover our single-photon results.

To be more general, let us assume we wish our measure-
ment to distinguish all the possible Fock states (states of
definite photon number) from 0 to N , where N is some
reasonable upper bound on the photon number of the

cavity. For instance, if we inject into the cavity a small
classical coherent field with mean value of n̄ = 3, then n
should follow a Poisson distribution; if we set N = 7 for
the measurement procedure, our bound is correct 98.8%
of the time.

To start, the procedure [5] assumes no knowledge of the
cavity state. The initial guess is thus a uniform proba-
bility distribution for the photon number

P (0)(n) = 1/(N + 1), 0 ≤ n ≤ N

First the phase shift per photon of the cavity is ad-
justed to Φ = 2π/(N + 1) so that each Fock state will
result in a maximally distinct phase. As, before an atom
is taken from |g〉 to 1√

2
(|g〉 + |e〉) by the initial Ram-

sey pulse. The atom then passes through the cavity and
entangles with each cavity Fock state |n〉 such that the
phase shift of the excited atomic state is Φn.

Now we would like to be able to ask, not just whether
the relative phase has picked up a minus sign as in the
single photon case, but we would like to be able to check
whether it is any arbitrary φ. In general, if the second
Ramsey pulse is set to φ out of phase with the first pulse,
it will convert

|+〉φ =
1√
2

(|g〉+ eiφ |e〉)→ |e〉

|−〉φ =
1√
2

(|g〉 − eiφ |e〉)→ |g〉

So we can use this measurement to probe all the phase
shifts corresponding to different photon numbers. How-
ever, we cannot completely determine the phase of the
atomic state by one measurement. If we measure for
any offset φ, in general there are multiple n such that
1√
2
(|g〉+ eiΦn |e〉) has a component along the |+〉φ state.

So detecting |e〉 after the second Ramsey pulse does not
narrow the possibles phase to just some φ. However, it
does make certain phases more likely than others (and it
eliminates the possibility that the phase is φ+ π).

So we will have to send in multiple atoms (one at a
time still), and measure a phase for each to narrow down
the actual phase shift being produced by the cavity. Each
measurement provides more information to condition the
probability of a given Fock state. Let us now examine the
implications of each measurement upon the state of the
cavity.

C. Pinning down the Fock state

For the mth measurement, let the current state of the
cavity be given by

N∑
n=0

α(m−1)
n |n〉
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Upon sending in the mth atom, we have the entangled
state

N∑
n=0

α
(m−1)
n√

2
{|g〉+ eiΦn |e〉} ⊗ |n〉

Let us offset the second Ramsey pulse by φ, in which
case it is useful to rewrite the above expression in terms
of |+〉φ and |−〉φ.

N∑
n=0

α(m−1)
n {1

2
(1+ei(Φn−φ)) |+〉φ+

1

2
(1−ei(Φn−φ)) |−〉φ}⊗|n〉

Trivially, the second Ramsey pulse converts this to

N∑
n=0

α(m−1)
n {1

2
(1+ei(Φn−φ)) |e〉+ 1

2
(1−ei(Φn−φ)) |g〉}⊗|n〉

Now the detection will collapse the entangled state into
either the |e〉 or |g〉 component. So, defining j = 0, 1 for
detecting |e〉, |g〉 respectively, we read off that the new
coefficient of the nth Fock state is

α(m)
n =

1√
Z
α(m−1)
n

1

2
(1 + ei(Φn−φ+jπ))

where Z takes care of the overall normalization (and
equals, up to a phase factor, the conditional probability
for detection of whichever state had just been detected).
We do not care about the phases of the Fock states, only
their probabilities, so let us examine how this measure-
ment has affected the probability that the cavity is in the
nth state.

P (m)(n) = |α(m)
n |2

=
1

Z
|α(m−1)
n |2 (1 + cos(Φn− φ+ jπ))

2

=
1

Z
P (m−1)(n)

(1 + cos(Φn− φ+ jπ))

2

Let us just run three checks that this makes sense.

1. If we have the offset φ and we detect the excited
state (j = 0), then the probabilities are now more
concentrated in the states n such that Φn ≈ φ.

2. We recapture the trivial single photon case: with
Φ = π and φ = 0, we have all the probability in
n = 0 if |e〉 is detected, and all the probability in
n = 1 if |g〉 is detected.

3. If we detect the excited state, then there is zero
probability that the phase shift equals φ + π, as
claimed earlier.

So, after M measurements, we find by induction that

P (m)(n) = P (0)(n)

M∏
m=1

(1 + cos(Φn− φm + jmπ))

2Zm

This agrees with the results derived by [6] by a different
approach: the language of Bayesian conditional probabil-
ities. It is worth noting that classical probability theory
for the cavity state, as used in [6], justifiably achieves
the same result as our treatment of the quantum super-
position. After the atomic measurement, the state of the
cavity is not collapsed, so the contributions to detection
probabilities from different Fock states do not interfere
(because the “which-way” evidence is still remaining in
the cavity).

Although the initial state and probabilities P (0)(n) of
the cavity are unknown, the measurements will tend to
concentrate the cavity in a finite number of steps into
some single Fock state in agreement with the measured
values of the phase shift. As mentioned, the procedure
for measurement simply approximates a flat distribution
for the initial probabilities, and, after many atoms have
passed, the measurements should indicate the correct col-
lapsed Fock state. And we have thus completed a non-
demolition measurement of the arbitrary photon number
of a cavity.

D. Repeated Measurements

In [6], each “single measurement” is implemented via a
sequence of 110 atoms, in a 51.1 GHz Fabry-Pérot cavity
with a long damping time of Tc = .130s, and the cavity
is cooled to .8K such that the expected thermal photon
number is nt = .05. Each sequence takes on the order of
Tm = .026s, so the measurement can be repeated mul-
tiple times on the same realization of the field, with the
same result expected. Since the goal is that the collapsed
state of the cavity survives each measurement, this re-
peatability of measurements on a single realization of a
system is the fundamental property of QND.

The plots in Figure 2 each measure an individual real-
ization of an initial coherent “signal” field for ∼ 29, 000
atoms. Each sequence of 110 atoms is taken to be a full
measurement, after which the algorithm re-initiates its
estimate of the probabilities to a flat distribution and
begins calculating again (so each plot contains ∼ 26 in-
dependent measurements). The expected photon num-
ber as estimated by the algorithm is then plotted against
time.

The plots quickly converge to stable 〈n〉 values at def-
inite photon numbers and plateau for a time which typi-
cally corresponds to ∼ 2 measurements. Damping results
in slow relaxation of the field, and because the measure-
ments frequently collapse the cavity into Fock states, this
damping appears as a series of quantum jumps, stepping
the photon number down one at a time to the vacuum.
(As can be seen in the magnified inset of the first plot, the
measurement procedure takes some time, about ∼ .01s,
to adjust to each quantum jump.) Additionally, ther-
mal fluctuations provide occasional kicks to the photon
number, most notably in the lower rightmost plot where
n = 1 jumps up entirely to n = 2 [6].
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FIG. 2: Expected photon number vs time for six independent realizations of the initial cavity field [6].

E. Field state reconstruction

By repeating this measurement on many separate real-
izations of an initial field produced by the same process,
we could reconstruct the photon number statistics of the
field. For instance, [6] generated the following histogram
(Figure 3) from 2000 measurement sequences (of the type
described) above on a small coherent field.

In Figure 3 we see integer peaks corresponding to mea-
surement frequencies of the different Fock states with a
small background noise of measurement sequences which
either did not collapse in time or were interrupted by de-
cay. As expected, 〈n〉 follows a Poissonian distribution.
This plot can be fitted to the the evolution of an initial
coherent state of n̄ = 3.82 which has decayed for half the
measurement time. Even taking into account the decay,
there is a slight excess of probability in the vacuum state,
but this is well understood: the measurement only picks
out a Fock state by its phase shift, so it only distinguishes
photon numbers modulo N + 1 (which is in this case 8).
The state of highest probability that is above the arbi-
trary N = 7 bound in this plot is the n = 8 state, which
will be detected then, as the n = 0 state, slightly skewing
the distribution.

However this only measures the probabilities of the
states, not the coherences between them [5]. In the
language of density operators, this measurement cap-
tures only the diagonal elements ρnn of the field’s den-
sity matrix. The phase coherence information (ie the
off-diagonal elements of the density matrix) can be mea-
sured by mixing the signal field with reference coherent
states of known complex amplitude α.

The effect of pulse-injecting a classical coherent state
into the cavity is to supply a phase-translation to the
cavity field, given by the Glauber translation operator:

D(α) = eαâ
†−α∗â. The density operator afterword is then

ρ(α) = D(α)ρD(−α)

D(α) will mix the off-diagonal elements into the diago-
nal of the Fock basis. Via this interference between the
signal field and the injected field of known phase, signal
phase information is converted into signal photon number
information. So sampling at many values of α, and re-
constructing the photon number distribution for each as
before yields constraints for the off-diagonal elements [5],
which can be solved by a quantum tomography technique
known as the method of maximum entropy [7], outside
of our current scope.

And thus, with the techniques discussed up to this
point, we have achieved our goal: we can measure the
density operator of an arbitrary initial photon field. But
we can push these methods even further.

IV. BEYOND MEASUREMENT

The result of measurement is a cavity field collapsed
into a random photon number. If we could choose that
number, then these techniques would provide a method
for generating arbitrary Fock states on demand, a use-
ful tool for quantum optics. Although the results of
the measurement as given are random, researchers in [8]
presented and realized a procedure for deterministically
steering the cavity into a predetermined state.

The idea is a feedback loop: we can begin by injecting
a classical field whose n̄ is the desired value. On each
iteration of the loop, we complete QND measurement,
update the density matrix with the new information, and
then inject a classical field with an amplitude chosen so as
to bump the cavity state toward the desired Fock state.
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FIG. 3: Photon number statistics of a classical coherent field [6]

The feedback loop could then continue to monitor the
state and protect it from decay by supplying more con-
trolled injections whenever it detects a quantum jump.
In this way, arbitrary Fock states can be generated on
demand and preserved for timescales far beyond their
cavity lifetime.

V. CONCLUSION

The fundamental principle which allows for such feed-
back systems to operate is the non-demolition nature of

the quantum measurements [5]. We have come a long
way in this review of QND photon techniques, from the
detection of a single photon, to mapping out arbitrary
cavity states and even creating and protecting the fragile
Fock states. With these skills under our belt, a whole
new world of cavity quantum electrodynamic manipula-
tions and measurements have become accessible to exper-
iment, from fundamental probes of the quantum regime,
to new testing grounds for quantum information science.
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