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We discuss the phenomenon of Johnson noise and explain how it may be used to measure the
value of Boltzmann’s constant, then report and analyze an experimental realization of this type of
measurement, present the results and detail possible sources of error. This experiment successfully
determines Boltzmann’s constant via two independent means and also determines the Celsius value
of absolute zero. All of these quantities are found to agree with previously reported values to within
experimental uncertainty.

I. BACKGROUND AND MOTIVATION

I.1. Boltzmann’s Constant and Johnson Noise

Boltzmann’s constant, often written k, connects the
statistical mechanics of the microscopic world to the ther-
modynamics of macroscopic scales. It thus generally ap-
pears in relations between thermodynamic and micro-
scopic quantities. Consider, for instance, the ideal gas
law, PV = NkT , where k relates the macroscopic pres-
sure P , volume V , and temperature T of a gas to the
microscopic number N of molecules in the gas. As a fur-
ther example, consider the characteristic voltage of a p-n
junction, VT = kT/q, where k relates a voltage VT and a
temperature T to the charge q of a single electron. This
property of bridging the division of scales makes k inher-
ently difficult to measure without a means of accessing
the microscopic quantites in a macroscopic system (eg
counting the number of gas molecules or measuring a sin-
gle electron’s charge). However, one astounding feature
of the phenomenon of as Johnson noise is that does allow
measurement of Boltzmann’s constant via only thermo-
dynamic quantities.

Johnson noise is the universal and unavoidable volt-
age noise across a resistor at finite temperature, due to
thermal agitations in the resistor. The magnitude of this
noise is given by the Nyquist thereom (a specific case of
the fluctuation-dissapation theorem), and the simplest
derivation follows that of Nyquist’s original exposition
[1], which also provides a great deal of insight into the
reason why Johnson noise allows experimental access to
Boltzmann’s constant.

I.2. Nyquist Theorem

To begin, suppose that two resistors (I and II), both of
resistance R, are placed in an otherwise empty circuit, in
thermal equilibrium at temperature T. At finite temper-
ature, there will be some thermal agitation of the charges
and electromagnetic fields inside each resistor, which will
result in a fluctuating voltage across the resistor, and the
consequent driving of each resistor by the other. Since
the two are in equilibrium, the power supplied from I to
the II must be the same as the that from II to I. The fol-

lowing analysis will extract the magnitude of the thermal
fluctuations in voltage by deriving that power transfer in
two separate ways and equating their expressions: one
method invokes the circuit relations, and the other ther-
modynamics.

For ease of computation, both methods will analyze the
fluctuations in an infinitesimal frequency range dν; we in-
tegrate these results over the frequency range of interest
afterwards. The first expression for the power follows
from basic circuit theory. The average power supplied
to II is the product of the voltage and current across it,
both of which can be easily derived for such a trivial cir-
cuit, modelling the Johnson noise of I as a series voltage
supply:

d〈PII〉 = d〈IIIVII〉
= d〈(VII/2R)(VII/2)〉
= d〈V 2

II〉/4R

This circuit analysis thus gives the power transferred
from I to II.

The thermodynamic expression involves more subtlety.
We consider placing between these resistors a single, long
(impedance matched) transmission line of length L, with
which both are in equilibrium. It is, in fact, this clever
thought experiment which explains how Johnson noise
grants the experimenter access to Boltzmann’s constant:
though it is difficult, for instance, to count the number of
gas molecules in the ideal gas example, we do know ex-
actly how to enumerate the degress of freedom in a trans-
mission line–these are the electromagnetic modes which
satisfy the boundary conditions. Such modes are those
with frequencies

nvp/2L, n ∈ N,

where vp is the propagation velocity of the line. Since
each mode contains two degrees of freedom (that is, one
electric and one magnetic), the equipartition theorem1

1 Here we assume that we are dealing with frequencies much lower
than kT/~, which, for room temperature is 6THz. This is well
beyond the range of the reported experiment. At these higher
frequencies, quantum effects reduce the average energy per mode,
such that the total energy converges.
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asserts that each mode will contain, on average, an energy
kT . From the mode density and average energy, we can
determine the energy in an infinitesimal frequency range
to be

d〈E〉 = 2kTL/vpdν.

Now, we reinterpret the thermal energy in the modes
of the conductor. Each standing wave mode can be seen
as a superposition of two travelling waves, one suppling
power to each resistor. The average power to II then, is
quickly shown to be

d〈PII〉 = kTdν.

And we now have a thermodynamic expression to relate
to the circuits-based expression. Setting the two powers
equal, we arrive at the Nyquist Theorem:

d〈V 2〉 = 4RkTdν

The most important feature of this equation for our
purposes is that it involves only macroscopic quantities
and k. So, because of our knowledge of the electromag-
netic modes of a conductor, we should be able to de-
termine Boltzmann’s constant with no microscopic mea-
surements.

II. PROCEDURE

II.1. Apparatus and Method

The experimental scheme is depicted in Figure 1.
Johnson noise from a resistor (order of microvolts) trav-
els through a twisted pair to a preamp, which amplifies
it by a factor of 1000 (to millivolts). The signal is then
filtered by a 1kHz-50kHz bandpass, and the RMS voltage
is read from a multimeter. Each measurement of voltage
involves 15 readings of the multimeter. The switches in
the resistor box allow the experimenter to easily short
the resistor out (via switch 1) so that noise from the rest
of the signal chain can be measured and subtracted out,
or reroute the resistor connection (via switch 2) from the
signal chain directly to an ohmmeter.

There are two separate methods for determining Boltz-
mann’s constant from this setup. One is to observe the
change in Johnson noise levels as the resistance is varied,
which simply involves testing a range of resistors (in our
case, from 50kΩ to 763kΩ), and a second is to observe
the change in Johnson noise as the temperature is varied,
which we acheive by inverting the resistor box to insert
the resistor into a liquid nitrogen bath or an oven (whose
temperature is monitored from a thermocouple held near
the resistor). The oven is extemely slow to stabilize at a
fixed temperature, so, instead of holding the oven tem-
perature fixed for each measurement, we measure as the
temperature drifts and ensure that we collect all fifteen

FIG. 1: The noise from the resistor is amplified, filtered,
and collected on the multimeter. This image was

modified from that appearing here [2].

voltage readings within a range of 1◦ C about the desired
temperature.

In order to actually determine the Johnson voltage
across the resistor, we will first require the transfer func-
tion from the resistor voltage to the multimeter voltage,
as found below.

II.2. Calibrating the Measurement Chain

In determining the transfer function, we divide the sig-
nal chain into two parts: that preceeding the preamp, and
that including and following the preamp.

The first segment of the chain connects the resistor to
the preamp. These wires and the preamp inputs both
contribute some capacitance to the circuit. We model
this segment as an RC circuit with resistance R (the re-
sistor under study) and a lumped capacitance C, driven
by the Johnson noise. This is shown in Figure 2. Using
the (complex) voltage divider relation, the voltage at the
output (for the frequency ν component of the Johnson
noise) is given by

d〈V 2
AB〉 =

1

1 + (2πνRC)2
d〈V 2

J 〉. (1)

That is, the voltage at the preamp is simply the Johnson
voltage scaled by a frequency dependent factor, which
attenuates higher frequencies. R is known, and C can be
determined simply by applying an LCR meter across the
resistor clips of the resistor box.

Now, the transfer function of the second segment of the
chain (that is, beginning with the preamp) is determined
directly. A wavefunction generator (with its output att-
tenuated to microvolts) is connected to the preamp in-
puts and a separate multimeter. The gain g(ν) is taken as
the ratio of the voltage on the final multimeter to that on
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this intermediate multimeter, and the transfer function
shown in Figure 3 is obtained by varying the frequency
on the waveform generator.

FIG. 2: The first segment of the signal chain constitutes
an RC circuit

FIG. 3: The transfer function of the second segment of
the signal chain is measured directly

Putting these two segments together yields our total
transfer function:

〈V 2〉dν =
g(ν)2

1 + (2πνRC)2
〈V 2

J 〉dν

=
g(ν)2

1 + (2πνRC)2
4RkTdν (2)

We integrate up in frequency space in order to deter-
mine the RMS voltage which the multimeter will read.
Since the only frequency dependence in Equation 2 comes
from the transfer function (ie classical Johnson noise is
spectrally white), we will just numerically integrate the
transfer function and call that factor G:

〈V 2〉 = 4GRkT (3)

And here we have our output voltage in terms of known
quantities and k. In practice, there will be some addi-
tional Johnson noise from the remainder of the signal
chain. To determine the magnitude of this noise, we
short out the resistor and measure how much noise 〈V 2

S 〉
remains (this is generally generally about 1mV at output
compared to the 4-10mV of output from Johnson noise).
Since this noise is non-correlated with the Johnson noise,
we will simply subtract out 〈V 2

S 〉 from the mean square
voltage on the multimeter to get the actual 〈V 2〉.

III. DATA AND ANALYSIS

As mentioned, there are two separate procedures for
measuring Boltzmann’s constant. If we take a sequence
of measurements with different resistors at room temper-
ature (25◦C), then a plot of V 2/4GT versus R should
have a slope of k. The fit is shown in Figure 4. Notice
that we also allow a (small) offset term in this fit, as
justified below in the error analysis section. This fit esti-
mates k = (1.383± .013)× 10−23J/k, which is consistent
with the known value of k = 1.3807× 10−23J/k.

FIG. 4: The scaled Johnson noise is linear in resistance
with a slope of Boltzmann’s constant.

Alternatively, varying the temperature at constant re-
sistance leads naturally to a plot of V 2/4GR vs T . The
slope of such a plot should yield k, and, if we leave the
temperatures in Celsius, its extrapolation to the x-axis
should yield the Celsius value of absolute zero. The fit, as
shown in Figure 5, estimates (k = 1.387±.019×10−23J/k
and absolute zero= 276± 4◦C, both of which are consis-
tent with the known values.

We do note the relatively high χ2 value, indicating that
the points in this plot are subject to more scatter than
our error propagation would suggest. The probable cause
is unaccounted-for temperature variation (that is, along
the horizontal axis), as discussed below.
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FIG. 5: This scaling of Johnson noise is linear in
temperature with a slope of Boltzmann’s constant, and

an x-intercept at absolute zero.

IV. ERROR ANALYSIS

Several factors allow many of the uncertainties to be
kept quite low. For each voltage, fifteen readings were
taken from the multimeter, which reduces the statistical
uncertainty in 〈V 2〉 down below 1%. The resistance val-
ues are also easy to measure (and were actually measured
at all temperatures involved in the experiment since re-
sistance may vary with temperature), so the uncertainty
in R is well below 1% as well. Room temperature was
measured by a lab thermometer, and is taken to be ac-
curate to within 1◦C throughout the experiment.

However, the uncertainty in capacitance dominates
these other statistical errors. The value of C was mea-
sured on the day of the resistor-variation measurements
to be 60.5pF, and on the day of the temperature-variation
measurements to be 61.7pF, both with about 1pF of un-
certainty based on the observation that the readout had
about 1pF of variation depending on the orienation of the
LCR meter. This error propagates through the transfer
function to produce about 3% uncertainty in G, which is
the main contributor to the errorbars shown in Figures
4 and 5. The uncertainty in k from each of those plots,
as given above, is then taken to be the fitting parame-

ter uncertainty from a χ2 minization. That uncertainty is
then further propagated through the linear extrapolation
which determines absolute zero.

The x-axis of the temperature-variation plot also con-
tains a systematic uncertainty due to the difficulty of
measuring the temperature in the oven. Aside from
the previously mentioned 1◦C temporal variation (as
the oven temperature changes during the course of the
15 rapid measurements), there is another approximately
3◦C uncertainty due to spatial variation of temperature
within the oven. (The thermocouple was estimated to
sit within an inch of the resistor, and the temperature
was seen to vary by 3◦C when moving the thermocou-
ple by an inch.) This horizontal uncertainty may ac-
count for much of the unexpectedly high scatter in the
temperature-variation plot.

As a final systemic to discuss, we allow in our resistor-
variation fit a small constant offset. This is because the
subtraction of 〈V 2

S 〉 (as discussed in the signal chain)
may not perfectly eliminate the additional noise: for in-
stance, removing the resistor changes the RC circuit at
the preamp input, which means that the additional noise
has a slightly different transfer function when we short
the resistor versus when the resistor is present. An ad-
ditional offset in the fit is justified so long as it remains
small. It comes out to roughly 2% of the smallest value
of 〈V 2〉/4GT , so we are satisfied that the shorted voltage
subtraction is reasonably, but not perfectly, effective for
removing additional noise.

V. CONCLUSION

As discussed in the introduction, the known enumer-
ation of electromagnetic modes within a conductor al-
lows the determination of Boltzmann’s constant without
measurements of any microscopic quantity. Exploiting
this phenomenon, we have determined Boltzmann’s con-
stant (in two ways) and the Celsius value of absolute zero.
Both of these quantities are are consistent to within ex-
perimental uncertainty with previously reported values.
Future experiments may be able to improve upon this
precision further by more detailed study of the capaci-
tance of the input circuit to the preamp.
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