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This paper introduces quantum noise, surveys its appearance in many implementations of quantum
computing systems, discusses error correction codes for managing it (a three-bit classical code, a
three-qubit quantum code, and the nine-qubit Shor code), and closes with a glimpse of fault-tolerant
computing and the threshold theorem.

I. INTRODUCTION

Advances in quantum information science over the last
decades make ambitious promises ranging from vastly
more efficient algorithms to solve intractable problems
(such as large integer factorization), cryptographic sys-
tems guaranteed secure by physics itself, and a deeper un-
derstanding of quantum mechanics with the experimental
ability to precisely manipulate the quantum world.

The advantages of quantum computation arise from
the quantum mechanical properties of the qubits (analo-
gous to classical bits) upon which such computing models
are based, namely superposition and entanglement.

For instance, a classical bit can take one of two discrete
values (conventionally labelled as “0” and “1”) and a
string of n classical bits can take on one of 2n values.
Meanwhile, a qubit may take on any superposition in
some two-dimensional basis, {|0〉 , |1〉}, and a string of n
qubits may take on any superposition in a 2n-dimensional
basis of product states. Thus, any classical state of n
bits may be specified by n 0’s and 1’s, but a state of n
qubits must be specified by 2n coefficients [12]. So the
information stored in the state of n bits grows linearly
with n, and the informations stored in the state vector of
the n qubits grows exponentially with n. To double the
memory of a quantum computer, add one more qubit.

Furthermore, linear operations on quantum systems
act separately on each element of a superposition, which
enables the parallel execution of massive calculations.
Clever quantum algorithms (such as the famous Shor’s
algorithm) exploit these techniques in imaginative ways
to solve problems which cannot be managed efficiently in
classical models.

However, one difficulty such systems face is the fragility
of qubits–the small systems in which the quantum me-
chanical regime applies may be quite sensitive to noise,
decoherence, and perturbation from the environment,
which engineering and experimental brilliance can only
limit so much. This paper will address the appearance
of noise both abstractly and in experimental realizations,
and the computational methods for coping with its dis-
turbing influence.

II. QUANTUM NOISE

Quantum errors–unwanted random changes in the
qubit state–are caused by both imperfections of the sys-
tem performing the computation and the undesired in-
teraction of the qubits with the environment. So that
the reader may have examples in mind, we shall exam-
ine several concrete realizations of quantum computing
and their associated errors before discussing correction
schemes.

A. Optical Quantum Computing

Optical computers, using photons for their qubits,
likely provide the most noise-free implementation[1],
since photons propagating in free space or optical fibers
do not couple strongly to each other or the environment.
The qubit can be stored in the polarization state, the
possible paths of a beam-splitted photon, or even with
time-binning (where an interferometer with uneven arms
separates the pulse into two components and recombines
them such that one component is delayed in propaga-
tion.)

Subjecting different components of the qubit to differ-
ent indices of refraction is a simple way to adjust the rel-
ative phases (eg. for a polarization qubit, one could use
an anisotropic material, which has different indices for
different polarization axes, to provide this arrangement.)
By optical methods such as these, one can achieve any
arbitrary single-qubit unitary transformation.

The difficulty is that multiple-qubit operations require
the passage of one photon to affect the other. Since pho-
tons do not interact directly, such an effect must usu-
ally be mediated by matter. Non-linear materials, cavity
QED, or even clever (non-deterministic) linear techniques
[1] allow for this. Still, imperfections in these components
do allow for error (eg, the polarization of a photon may
rotate along an optical cable, and whenever the photon
passes through materials, there is the risk of absorption.)

B. Ion traps

One could also use the electronic states of atoms
as qubits. Generally, electromagnetic traps are config-
ured to hold individual ions or strings of ions in place.
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Lasers can then address transitions between the various
atomic and motional states of the individual ions, and
the coupling of the motional modes of the ions (via their
Coulomb interaction) allows one to entangle qubits and
perform multi-qubit operations.

For example, the Quanta group at MIT [2] demon-
strated a controlled-NOT gate (a multi-qubit operation
which will be important to us in upcoming sections)
using the transitions of 88Sr+ ions suspended by two-
dimensional surface electrodes. In order to keep the ions
well-localized in the trap and use the low motional states,
the system is kept in vacuum and cooled to 4 Kelvin.

These states can be trapped for lifetimes on the order
of hours, but the referenced paper lists sources of errors
such as off-resonant excitations, and minor fluctuations
in the frequency and intensity of the laser [2]. Prevention
of the heating of the motional states (eg due to surface
charge fluctations in the trap) is another important chal-
lenge in coherently coupling the qubits [3].

Also widely used are traps with three-dimensional ge-
ometries (eg. radio frequency Paul trap), such the one
used in demonstration by Rowe et. al [4] of coherent
transportation of the qubits, which is one route to im-
plementing an interconnected network of trap comput-
ers. This paper also cites imperfect laser pulses in state
preparation and detection as their main error sources.

C. NMR Computing

Nuclear Magnetic Resonance computers store the
qubits in nuclear spin states, and manipulate them via a
rotating magnetic field pulse. Because nuclear magnetic
moments are so small, the system must contain many (at
least 108) nuclei for detectable signals. But fortunately
the weakness of nuclear magnetic moments also means
they couple weakly, and thus are quite robust [8].

NMR is typically done with molecules, and each atom
in such a molecule may have different spin-splittings–even
if both atoms are of the same element, the difference can
be due to the perturbations from the electronic structure
of the molecule. Thus, pulses at different frequencies can
address separately the different atoms (the qubits) of a
molecule. The readout from measurement of any qubit is
an ensemble average over all the molecules. The effective
spin-spin coupling of the nuclei mediated by the electrons
can also be used to entangle the qubits.

NMR computing is distinct from the other two systems
in that it operates on a bulk system which is (initially)
in thermal equilibrium (rather than, for instance, a pure
state of qubits initialized to |0〉), and consequently in-
volves many interesting techniques, outside of our scope,
for applying typical quantum computations [8].

Decoherence (which is in this case, the many spins rep-
resenting a qubit falling out of phase with each other)
may arise from inhomogeneities in the magnetic field–
this effect, however, is actually reversible (via a tech-
nique known as “spin echo”). However, spin-spin cou-

plings and the thermalization of the the spins do repre-
sent irreversible errors[8].

Having discussed quantum noise in generality and seen
its realization in a couple implementations, we are now
ready to discuss how to cope with it, almost.

III. A DIGRESSION: CLASSICAL ERROR
CORRECTION

Before we dive into correcting quantum errors, it would
suit the reader to have some grounding in classical error
correction. In this section, we will also introduce cir-
cuit logic diagrams, which will generalize to the quantum
case, to visually represent our computations.

A. Circuits

Lines will indicate the flow of bits through logic. A bit
string, such as “010” enters on the left, each bit getting
its own line (order top-to-bottom). The simplest diagram
is the identity circuit:

FIG. 1: In a logic diagram, the bits flow from left to right.
Here, three bits are acted on by the identity operation.

Let us add a useful component to our inventory. The
controlled-not (CNOT) gate, acts on two bits, a “target”
and a “control.” CNOT flips the target bit if the control
bit is 1, and it does nothing at all if the control bit is 0.
We will represent it on circuit diagrams as:

FIG. 2: CNOT. The dark circle marks the control bit, and
the + circle marks the target bit. Any other bits (eg the third
bit) are unaffected.

The reader should check his understanding by deter-
mining that if the three bits begin (on the left) as 110,
then they exit on the right as 100.

Those familiar with classical logic gates will recognize
this action as a classic XOR (which takes two inputs and
outputs one bit indicating whether they are the same),
except that the XOR gate then throws away the control
bit (because classical logic gates conventionally give a
single output).

We will also find the controlled-controlled-not gate
(aka Toffoli gate) useful. This gate is the like CNOT
but requires two control bits to both supply 1’s in order
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to flip a target bit. An example is given below (left of
diagram), along with a handy modified version (right of
diagram).

FIG. 3: Controlled-controlled-not. Flips the target bit con-
ditioned on two control bits supplying correct values. For
convenience, we use filled circles to require 1’s, and hollow
circles to require 0’s. This syntactic sugar just saves us from
having to include a bunch of NOTs in the circuit.

B. Errors

In the simplest and most illuminating model [9], er-
rors will be treated as a blackbox operation which, with
some probability p, flips any given bit (independently).
Further, as both abstraction and as a first-attempt sim-
plification, we will assume that we can implement the
error correction codes with perfect, reliable logic gates.
Thus we localize the possible errors outside of our error
correction mechanism (we can imagine, perhaps, that we
are attempting noisy transmission between two reliable
circuits).

ECircuit Circuit

FIG. 4: Errors are represented by a single operation which,
for each bit independently, flips it with probability p.

Suppose we are trying to protect a single bit. The most
straightforward approach would be to replicate the bit,
and send three copies of the bit through the circuit. That
way, whenever we find that one bit has been flipped, we
can take a majority vote of the three bits to correct the
error.

Of course our result will be incorrect if the noise flips
two bits, but this code is certainly an improvement. In
the original set-up of trying to send one bit through a
noisy element, we had a probability p of error. In this
error correction code, we have a probability

P (flip more than one bit) = 3p2(1− p) + p3 = 2p3 + 3p2

of error. We have eliminated the error to first-order, and
our result is an improvement so long as p < 1

2 . Obviously,
adding more bits would create an even more robust code.

Let us try to implement this code (using our logic cir-
cuits) to correct single-bit flip errors. In general, there
are three parts. (1) Encoding: store the bits with some
form of redundancy. (2) Syndrome Measurement: deter-
mine if there was an error. (3) Recovery: correct the
error.

1. Encoding

This step can be done with two CNOTs. Assuming the
top bit is the one we are trying to send, and we have two
other bits (hereby referred to as ancilla bits) initialized
to 0, the following will do the trick.

E Circuit

Encoding

FIG. 5: Assuming the ancilla are initialized to zero, the en-
coding stage above will set all three bits equal to one another.

2. Syndrome Measurement

We will measure the encoded bits and store our results
in two additional ancilla initialized to 0’s. Suppose we
measure the parity [13] of the 1-2 pair and the parity of
the 1-3 pair (numbered from the top). If all the parities
are even, then we know there has been no error (remem-
ber that we are assuming at most single bit-flips). If
exactly one of those parities is odd, then we know that
bit #2 or #3 respectively is in error. If both results are
odd, we know that #1 is in error.

E Circuit

Encoding Syndrome

FIG. 6: The first additional ancilla will now store the parity
of the 1-2 pair, and the second will store the parity of the 1-3
pair.

3. Recovery

The method for recovery uses the measured parities to
signal a trio of controlled-controlled not gates to correct
the erred bit.

After these three stages, we expect, assuming the noise
did not flip more than one bit, to have a corrected state
of encoded bits. This is the Classical Three-Bit Code [9].
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E

Encoding Syndrome Recovery

FIG. 7: Use the parities to correct the encoded bits. After
doing so, we dispose of the additional ancilla.

IV. QUANTUM ERROR CORRECTION

A. The possible errors

In classical computation, the only error which could
happen to a bit during some interaction is that its dis-
crete value is unintentionally flipped.

In the quantum case, the coefficients on the |0〉 and |1〉
states can change in both magnitude (“bit flip”) and rel-
ative phase (“phase flip”). And both of these potentially
disturbed parameters are continuous values. It seems
that our codes for error correction will thus have to mon-
itor two effects of continuous errors! How can we gener-
alize our classical circuit to handle this?

B. Quantum circuit diagrams

We have already discussed several implementations of
quantum computing, but now we shall abstract away
such detail. Broadly speaking, an operation can be done
on a set of qubits by exposing them to some Hamilto-
nian, which then leads to a unitary time evolution. Each
“circuit element” then can be described by a unitary ma-
trix acting on the state vector of the qubits. Now let us
describe the action of the quantum logic gates, so that
we can try to translate our error correction code.

The vital task of flipping a single qubit (|0〉 → |1〉,
|1〉 → |0〉) will be handled by the Pauli X matrix:

X = |1〉 〈0|+ |0〉 〈1|

With this notation, the CNOT gate (taking the first
qubit as the control), applies the identity I or the Pauli
X to the second qubit, conditioned on the first qubit.

CNOT = |0〉1 〈0|1 ⊗ I2 + |1〉1 〈1|1 ⊗X2

Similarly, the Toffoli gate could be written

TOFFOLI = {1−|11〉12 〈11|12}⊗I3 + |11〉12 〈11|12⊗X3

For continuity, we shall continue to use the same nota-
tion in our diagrams for the quantum CNOT and quan-
tum Toffoli gates as their classical analogues, so that the
full Classical Three-Bit Code diagram shown at the end
of the previous section is a valid quantum circuit. The
question still remains, however, is it a valid quantum er-
ror code?

C. Should quantum error correction be possible?

Since we have determined, in our discussion of the clas-
sical case, that redundancy can be useful for conveying
information, it seems prudent to repeat once more the
stages of error correction: encoding, syndrome measure-
ment, recovery. Let us address some concerns with the
quantum implementation of these.

1. Encoding

For this stage, we just store the qubits with repeti-
tion so that so that, if one bit is flipped, we can recover
the information. Simple enough. However, the famous
no-cloning theorem of quantum computation forbids pro-
cesses which duplicate arbitrary quantum states. The
proof is so simple, we include it below:

Proof. Suppose, by manner of contradiction, that some
unitary operation copies any arbitrary unknown state |ψ〉
onto another qubit, which, without loss of generality, be-
gins in state |0〉.

|ψ〉 |0〉 → |ψ〉 |ψ〉

Let us try to copy two arbitrary states |φ1〉 and |φ2〉.
Since unitary operators unitary operators preserve inner
products, we can equate the inner products of these two
system states before and after copying:

〈φ1| 〈0| |φ2〉 |0〉 = 〈φ1| 〈φ1| |φ2〉 |φ2〉
〈φ1|φ2〉 = 〈φ1|φ2〉2

But we quickly arrive at a statement which is certainly
not true for arbitrary |φ1〉 and |φ2〉. So such a process,
which duplicates arbitrary states cannot exist.

This does not bode well for our hopes to use a repeti-
tion encoding.

2. Syndrome Measurement

For this stage, we simply measure whether an error
has occurred. Unfortunately, quantum measurement col-
lapses superpositions, destroys the information, and can-
not exactly determine the state of the qubits. And fur-
thermore, the possible errors are continuous, as discussed
earlier.

3. Recovery

Perhaps we could still recover the encoded qubits, ex-
cept that we probably destroyed all our information when
applying that syndrome measurement (on those encod-
ings which cannot exist in the first place).
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D. The Magic

Despite all of the above objections, we will find that
the circuit below can protect an arbitrary qubit from bit-
flips (again assuming no more than one qubit gets flipped
by the noise). [9]

E

Encoding Syndrome Recovery

FIG. 8: A three-qubit bit-flip code. As in the classical case,
ancilla are initialized to |0〉.

The astute reader may recognize this as the exact same
diagram from the classical code, the one which we just
argued should be impossible to implement quantum me-
chanically. To reconcile this, we shall certainly have to
reinterpret our method. What is each stage actually ac-
complishing?

1. Encoding

If the first qubit begins in the state α |0〉 + β |1〉, and
the ancilla begin in |0〉, then, using the above discussion
of the quantum CNOT gate, the encoding stage will take

{α |0〉+ β |1〉} ⊗ |0〉 ⊗ |0〉 = α |000〉+ β |100〉
↓

α |000〉+ β |111〉

Notably, this does not violate the no-cloning theorem,
because we have not made three copies of a qubit: we
have created an entangled state of three qubits which
contains the information previous held in a single bit.
Here is the difference between the entanglement and the
copying, spelled out in mathematically:

α |000〉+ β |111〉
6=

{α |0〉+ β |1〉} ⊗ {α |0〉+ β |1〉} ⊗ {α |0〉+ β |1〉}

Because the three are entangled, we cannot describe
each bit separately (they are not pure states). In other
words, it is not the case that each bit independently con-
tains the information, for instance, if we were to measure
one of the bits, we would collapse all three.

2. Syndrome Measurement

The “measurement” entangles two more qubits into
the system. As in the classical case, the first new addi-
tion reflects the 1-2 parity, and the second addition gives

reflects the 1-3 parity. As noted, the error is continuous,
so the noise could “partially flip” a bit. For example,

|000〉 → α2 |000〉+ β2 |100〉

But, since our measurement is quantum mechanical as
well, that does not pose a problem. Our five-qubit sys-
tem (including the new ancillae) will simply take on the
syndrome superposition corresponding to the error su-
perposition:

{α2 |000〉+ β2 |100〉} ⊗ |00〉 → α2 |00000〉+ β2 |10011〉

Observe that the additional qubits in which we display
the value of the measurement do not actually determine
the value of the encoded qubit we are trying to protect.
In fact, they only mark, for each pure state of the sys-
tem, the information of which error has occurred (the
syndrome). The importance of this will soon be clear.

3. Recovery

Now we apply various Toffoli gates, as in the classical
circuit, to correct the encoded qubits for each possible
error. Continuing the example from the syndrome section

α2 |00000〉+ β2 |10011〉
↓

α2 |00000〉+ β2 |00011〉

We have recovered the original encoded qubits, and, as
we can see, the encoded bits are not actually entangled
with the ancilla anymore:

α2 |00000〉+ β2 |00011〉 = |000〉 ⊗ {α2 |00〉+ β2 |11〉}

So if we “dispose” of these ancilla now, (ie the com-
puter resets them both back to |0〉 by some environ-
mental interaction, for later usage), then they will not
collapse/measure the qubit in any way.

Voilà! We have corrected any arbitrary bit-flipping
error on a single quantum bit [9].

E. Phase error

However, there we still haven’t corrected any errors in
the relative phase between the |0〉 and |1〉 state. None
of the circuit elements we’ve dealt with care about the
phase, so we’ll have to introduce something new.

Another common gate in quantum computation is the
Hadamard gate.

|0〉 → 1√
2
(|0〉 + |1〉) ≡ |+〉

|1〉 → 1√
2
(|0〉 − |1〉) ≡ |−〉
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H

FIG. 9: The Hadamard gate.

We notice that if the noise changes the relative phase
by π between |0〉 and |1〉, than it converts |+〉 to |−〉.
So encoding in the {|+〉 , |−〉} basis turns the phase noise
into a {|+〉 , |−〉}-bit-flip noise.

So to protect from phase noise instead of bit-flip noise,
we simply switch our encoding scheme by applying the
Hadamard gate to each qubit:

E

Encoding

H

H

H

FIG. 10: An encoding to protect from phase errors.

Explicitly, the encoding is then

{α |0〉+ β |1〉} ⊗ |0〉 ⊗ |0〉 = α |000〉+ β |100〉
↓

α |+ + +〉+ β |− − −〉

And we can simply reuse our previous Syndrome Mea-
surement and Recovery codes if we conjugate them by
the Hadamard operator into this basis [9].

E

Encoding Syndrome Recovery
H

H

H

H

H

H

H†

H†

H†

FIG. 11: A three-qubit phase-flip code.

F. Now we’re cooking

We can concatenate these two encodings to form the
Nine-qubit Shor Code. This code can protect a single
qubit from any single bit-flip and/or single phase flip type
error. We first do a three-qubit phase encoding, and then
encode each of those three qubits with a three-qubit bit-
flip encoding. Sparing the arithmetic, the end result is

|0〉 → 1

2
√

2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

|1〉 → 1

2
√

2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

A moment’s consideration will show any single bit flip
and/or single phase flip on the encoding of |0〉 will create
some other state orthogonal to it, but clearly distinguish-
able from any state which such errors could make from
the encoding of |1〉 (and vice versa). Thus, a the syn-
drome measurement can distinguish which is the original
state of any erred state. The error can be corrected [9].

Using a classical code, superposition, and concaten-
tation, we have generated a nine-qubit quantum error
correction scheme. In fact, with a rumination in group
theory, one can even come up with codes requiring fewer
qubits, the lower bound for this level of protection being
five qubits [9].

V. EXPERIMENTAL REALIZATION

Quantum error correction has been realized in a vari-
ety of implementations, (eg a three-qubit code on trapped
ions [5], and on superconducting circuits [6], and the re-
marked five-qubit code in NMR [7]).

It will be revealing to examine some results from that
superconducting realization (Figure 12).

FIG. 12: Experimental performance of a quantum error cor-
rection code versus degree of induced noise. The red (filled)
circles represent error corrected results, the blue (unfilled) are
uncorrected results, but subjected to a similar series of oper-
ations, and the black line is the simulated case of an uncor-
rected qubit, with all other parts of the circuit and experiment
idealized [6]. Fidelity is a measure of how well the state of
the qubit is preserved. Fitted expression for the curves are
given. Also, ignore the subplots.

There are two observations to take away from this plot.
First, the quantum gates themselves are not perfect; we
can see that, even when the induced error is zero, there
is some loss of coherence. In fact, for small probabilities
of error (leftmost region of plot), the mere addition of
the gates to implement this correction scheme does more
damage than good.

However, we do see the hallmark of our correction
scheme in the fitted expressions (in the bottom of the
plot). Although the corrected results are not an impres-
sive improvement, they contain no terms of first-order in
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p, [14] This corresponds to eliminating the single-qubit
errors as we predicted (see the discussion at the end of
the classical case).

VI. THE BIG PICTURE

Quantum error correction is obviously vital to the
practical implementation of even the smallest quantum
computers. But to be effective, error correction fits into
a larger scheme of fault-tolerant computing, because, as
we noticed in the previous section, attaching error cor-
rection codes onto an algorithm may make matters worse
since this adds more fallible gates to circuit.

The rough idea of fault-tolerant computing is to carry
out all operations on encoded bits, and carefully de-

sign gates and codes such that single correctable errors
do not propagate to become uncorrectable errors among
multiple qubits [10]. Then applying error-correction in-
between fault-tolerant subsystems should prevent the
propagation of errors throughout the computation.

Concatenation, which we used to derive the nine-bit
code, and fault-tolerant operations constitute a dream-
team. There is in fact, a divine theorem which, given any
quantum circuit and given quantum gates which operate
below a certain threshold level of error, guarantees one
can construct an equivalent circuit with any arbitrarily
small error rate using a polynomial-scaling number of
gates [9]. The magnificence of this theorem is that it
implies that quantum noise is not a fundamental barrier
to the future of quantum computation. So let us rest
easy, knowing that our qubits are safe.
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