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Here we examine the hyperfine structure of the 52S1/2 and 52P3/2 states of 87Rb and 85Rb using
Doppler-free spectroscopic techniques. We discuss the theory and experimental procedures of the
Doppler-free method, then determine the hyperfine coupling constants of both the 52S1/2 and 52P3/2

sublevels in both isotopes from analysis of the resulting spectra, and examine possible sources of
errors and uncertainties. Results are in accordance with previously accepted determinations of
Rubidium hyperfine structure.

The major goal of this experiment is the determination
of the hyperfine coupling constants A and B of 87Rb
and 85Rb via room-temperature Doppler-free saturated
absorption spectroscopy.

I. BACKGROUND

I.1. Rubidium HFS

The pertinent level structure of Rubidium is depicted
in Fig. 1. We are interested in the D2 transition (780nm)
between the ground state, 5S1/2, and the second excited
state 5P3/2. Hyperfine structure (HFS) due to coupling
between the nuclear and electronic magnetic moments
splits the 5S1/2 and 5P3/2 levels into sublevels distin-
guished by their total (nuclear plus electronic) angular
momentum quantum number, F .

In 87Rb, hyperfine structure splits the 5S1/2 state into
two levels separated by 6.8GHz, and the 5P3/2 state into

four levels spaced by an order of 100-200MHz. In 85Rb,
which is the more abundant isotope (72% vs 28%), the
structure is qualitatively identical, except that the F val-
ues are one larger and the splittings are typically about
half as large (note the ground state splitting of 3.0GHz).

Splittings for a given state of a given isotope can be
well approximated using two coupling coefficients: the
isotropic coupling, A, and the anisotropic coupling B, in
the following expression:

∆f = A
C

2
+B

3C(C + 1)− 4I(I + 1)J(J + 1)

8I(2I − 1)J(2J − 1)
(1)

where C = F (F + 1)− J(J + 1)− I(I + 1). The goal of
this experiment is to measure these couplings.

However, these splittings cannot be resolved by con-
ventional spectroscopy at room temperature, because of
Doppler broadening. The Boltzmann velocity distribu-
tion for the Rubidium gas gives a typical velocity com-
ponent along the laser propagation axis of ≈ 240m/s,
which is about a millionth of the speed of light. So typi-
cal atoms may see the lasers Doppler-shifted by a part in
a million, that is, by hundreds of megahertz. A beam red-
detuned (or blue-detuned) within the Doppler linewidth
will still resonate with atoms moving at typical velocities

FIG. 1: Level struture of the two common Rubidium
isotopes, 85Rb and 87Rb. Notice hyperfine splittings of
3.0GHz and 6.8GHz, respectively, in the ground states

and tens or hundreds of MHz in the excited states.
Modified from [1]

away from (or towards) the laser. More detailed calcu-
lations place the room temperature Doppler-broadened
linewidth at 500MHz, which entirely obscures all of the
hyperfine 5P3/2 splittings.

I.2. Doppler-free technique

This broadening can be eliminated by using two coun-
terpropagating beams of differing intensities in order to
select for only the zero-velocity group.

One beam, known as the “pump,” is strong1 enough
to “saturate” the transition; of the atoms resonant with

1 Strong compared to the saturation intensity,

Isat =
hν0(1 + τ/T )

2 + ΓiT

where σ is the absorption cross section per atom, τ is the excited
state lifetime, T is the duration for which a given atom is within
the beam waist, and Γi is the sum of all spontaneous decay rates
from the excited state out of the considered transition.
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this beam, half will be excited, and half will be in the
ground state. (Note that, because the rate coefficients
of absorption and stimulated emission are identical, a
laser cannot excite the population of a two-level system
beyond saturation2.)

The other beam, known as the “probe,” and typically
weaker by a factor of ten, is the beam whose transmission
will be monitored. Let us consider the absorption profile
of this beam. Following the depiction in Fig 2:

FIG. 2: Cartoon depiction of the Doppler-free scheme,
probe on the left, pump on the right. Laser light is

colored to represent the Doppler shift. A left moving
atom red-shifts the probe (as shown), which means it

will only absorb a blue-detuned probe.

(1) When the probe is blue-detuned, it will be absorbed
by red-shifting (ie approaching) atoms. (2) When the
probe is red-detuned, it will be absorbed by blue-shifting
(ie fleeing) atoms. In both cases, the mentioned atoms
will shift the pump in the opposite direction, so they will
not simultaneously resonate with the pump. (3) When
the probe is on transition, it resonates with atoms at rest,
but so does the pump, and because the pump saturates
the transition, half the atoms are already excited. Con-
sequently, the probe stimulates just as much emission as
absorption, and, overall, it transmits right through.

So we expect to see a broad (≈ 500MHz) absorption
peak, but with a small transmission dip (known as a
Lamb dip) in the middle. The width of this peak is lim-
ited by the natural linewidth of the transition (or, in the
case of this experiment, the laser linewidth ≈ 30MHz).
Examples of Lamb dips will appear shortly.

2 Excluding, of course, coherent effects (most famously Rabi flop-
ping), which will damp out on the timescale of the spontaneous
emission rate.

II. EXPERIMENTAL REALIZATION

The set-up used to apply this scheme is shown in Fig.
3. A laser controller allows the frequency of an exter-
nal diode cavity laser to be swept over a range of sev-
eral gigahertz. The output of this laser passes through
a Faraday isolator which prevents undesirable feedback
into the laser cavity, then onto the first beam splitter,
wherein some of the light is diverted to a Fabry-Pérot
cavity, used to monitor the frequency change in the laser
during a sweep. The Fabry-Pérot was measured to have
a length of 467± 3mm.3

FIG. 3: The laser is split into two probes beams and
one pump beam which counter-propagates along one of
the probes. The difference of the two probe signals is

passed to the oscilloscope. Image from [2].

The main beam continues to a prism: two reflections
split off and become the probe beams, while the transmit-
ted component becomes the pump. The probe beams are
directed through the Rb vapor cell mutually parallel, and
the pump is directed in the opposite direction through
the cell along the same path as one of the probes. Thus
one probe should be absorbed with a Doppler-broadened
profile, and the other should have this profile but with
the desired Lamb dips.

The transmission of both probes from the cell is di-
rected unto a pair of balanced photodetectors, and their
difference is sent to the oscilloscope. (The outputs of the
individual probe beams are also sent to the scope for the
purpose of debugging the setup). In total then, the scope
will receive a Fabry-Pérot signal, for monitoring the fre-
quency, the individual photodetector outputs and their

3 The uncertainty in this trivial measurement comes from the
difficulty of precisely locating the mirror interfaces which are
shielded from side-long viewing by protective holders. In princi-
ple, of course, it is possible to determine the cavity length with
much greater precision, however, this .06% uncertainty is already
much smaller than other systematic sources, so reducing it would
make no noticeable difference in our results.
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balanced difference, a sweep signal from the laser con-
troller, useful for monitoring the sweep, and an external
trigger from the laser controller. Data is recorded and
transferred to a computer for analysis.

III. DATA AND ANALYSIS

III.1. Frequency fitting

Since the 5S1/2 states have the larger splittings, transi-
tions from each of the 5S1/2 states form their own groups,
within which are peaks representing transitions to differ-
ent excited 5P3/2 states. Output from a single frequency
sweep is shown in Fig. 4, displaying all four peak groups
simultaneously. Frequency increases from right to left,
so, in that direction, the peaks represent transitions from
87Rb 5S1/2, F = 2, then 85Rb 5S1/2, F = 3, then 85Rb

5S1/2, F = 2, and finally 87Rb 5S1/2, F = 1. The first

FIG. 4: Dataset showing all of the peak groups (green)
and identified Fabry-Pérot peaks (red on blue). Note:
irrelevant overall sloping removed for plot legibility.

step in analyzing a data set is to convert the time axis of
the sweep into a frequency axis for the spectrum, using
the Fabry-Pérot fringes. The algorithm devised for this
purpose has several steps:

1. Fast Fourier Transform the Fabry-Pérot to estimate
a typical peak-peak separation.

2. Supply that separation to a standard MATLAB
peak-finding routine to locate all the maxima and
minima.

3. Use those extrema as intial guesses for local sinu-
soidal fits to hone in on the precise location of each
peak. (Results from this stage are displayed in Fig.
4 as the red dots; a plot like this is generated for
each run so that the experimenter can confirm the
procedure).

4. The frequencies at the peaks are known, and an
(empirically motivated) quadratic fit of frequencies
against time of peak generates a model for convert-
ing the time axis to a frequency axis. The RMS
deviation is taken to estimate systematic frequency
uncertainty. The results of this fit, for the same
dataset, are shown in Fig 5. Note that is method
of analysis has been modified from that given at a
recent talk to address concerns raised in the Ques-
tions segment.

FIG. 5: Quadratic fit of sweeping frequency (obtained
from Fabry-Pérot peaks) against time, used to convert
the time axis of the oscilloscope to a frequency axis for
analysis. This example comes from the same dataset as

in Fig 4. (Error bars too small to appear.)

III.2. Peak Analysis within Peak Groups

Given the data on a frequency axis, we can now ana-
lyze the peak locations. A dataset corresponding to the
rightmost peak of Fig. 4 is shown in Fig. 6. Regions of
interest for each peak were selected manually, and then
each peak was fit to a Lorentzian plus a linear function
(the linear was added to reduce position bias due to slop-
ing from the proximity of other peaks). Reasonable χ2

R
values justify this approach.

From these fits, one can then determine the interpeak
distances, as given in Table I, and compare with calcu-
lated values. Note: all calculated values in this paper use
Rubidium data from NIST [3]. The two sources of uncer-
tainty at this point are systematic frequency uncertainty,
as mentioned above, and fitting uncertainties.

As can be see in I, the systematic frequency uncer-
tainty dominates within these small-window (ie individ-
ual peakgroup) datasets. However, this uncertainty can
be reduced. Since it is due mainly to the non-linearity
of the frequency sweep, we expect the errors to average
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FIG. 6: Fitted peaks for the 87Rb5S1/2, F=2 group

∆fobs σstat σsys ∆fcalc
135 .04 4 133
79 .07 4 78

135 .3 4 133
78 .5 4 78

TABLE I: Observed interpeak distances from Fig. 6,
with statistical and systematic uncertainties, as

compared to calculated values. All quantities in MHz.

out if the same peak separation is evaluated at multiple
locations along the sweep. So if we take multiple spec-
tra, with experimental conditions such that the peaks
appear in different locations along the non-linear sweep,
the systematic uncertainty should average down with a
behaviour much like what one would expect from a sta-
tistical uncertainty (σ ∝ 1/

√
n). Given that justification,

we will estimate the systematic uncertainty of averaged
interpeak distances by combining the frequency uncer-
tainties in a statistical manner.4

If we take four different spectra such as the one in Fig 6
(totalling eight estimates for each separation at different
locations along the sweep), and average the distances,
and then do the same for the 85Rb 5S1/2, F = 3 group,
we arrive at a final table of peak distances, which are in
accordance with calculated values (see Table II).56

4 Also note that multiple peak separation values from each individ-
ual spectrum do correspond to the same underlying separation
(see Table I), so each spectrum can give some degree of this
averaging over the systematic uncertainty; ie each spectrum con-
tributes multiple data points to the number of measurements of
each separation.

5 The two peaks mentioned are by far the best resolved, to such
a degree that adding the other pair does not contribute signifi-
cantly to this portion of the analysis. They will be used when
discussing 5S1/2 splittings.

6 At this stage, we also linearly add in the .06% uncertainty due to

Isotope ∆fobs σstat σsys ∆fcalc
87Rb 135.3 .02 1.4 133.3
87Rb 79.5 .02 1.6 78.5
85Rb 61.5 .2 .6 60.5
85Rb 32.6 .1 .6 31.7

TABLE II: Averaged observed peak separations and
their calculated values. All quantities in MHz. (Note:

statistical errors for 87Rb are much lower in proportion
than for 85Rb only because the 87Rb peaks are more

spaced and thus easier to fit.)

III.3. 5S1/2 Coupling Determinations

Given these data, we are now in position to compute
the couplings A and B for the the 5P3/2 states. By evalu-
ating (1) for each state, we can write the above interpeak
distances as linear equations in terms of A and B, invert
to solve for these couplings, and propagate the uncertain-
ties through the linear system. The results, which agree
with NIST values [3] within uncertainty, are compiled in
Table III.

Isotope State A σstat σsys B σstat σsys ANIST BNIST
87Rb 5S1/2 85.9 .02 1.4 12.8 .03 2.2 84.7 12.5
85Rb 5S1/2 25.4 .1 .5 26.1 .3 1.0 25.0 26.0

TABLE III: Observed and previously accepted values
for the coupling constants of both isotopes of

Rubidium. All quantities in MHz. (Note: the different
scaling of the two types of errors between isotopes

occurs for the same reason discussed under Table II).

III.4. Peak Analysis between Groups

The procedure to determine the coefficients for the
5S1/2 states follows similarly, but relies on splittings be-
tween far distanced peaks rather than neighbors. Given
that, a couple of minor differences in the details of the
algorithm and its error propagation merit mention.

First, since we need to be able to see the individual
peaks even when zoomed out to view the entire spec-
trum, the datasets for this analysis were collected with
automatic scope averaging in order to improve the reso-
lution. Unfortunately, this had the side effect of reduc-
ing/averaging down the intensity of the Fabry-Pérot (FP)
signal, and the scope supplied this signal with less reso-
lution than that with which it appeared. The discretiza-
tion error in the FP fringes is noticable. However, since
multiple spectra from this analysis were all taken with

Fabry-Pérot cavity measurement, which acts as an overall scaling
factor in all the frequency differences.
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FIG. 7: Averaging together multiple Fabry-Pérot
signals gives a clear enough signal to analyze.

FIG. 8: Peaks from different groups are fit to
Lorentzians with linear terms (to account for biasing for
nearby peaks). This is exactly like the previous analysis.

the scope/sweep configuration in the same location, we
have many FP signals for what should be the same spec-
trum (up to statistical errors), and by combining these
Fabry-Pérot fringes together, we are able to reduce the
discretization to the point where our basic peak-finding
analysis is possible. This is demonstrated in Figure 7.

From there, a quadratic fit of frequency against time is
performed just as before. Additional systematic uncer-

tainty from our mentioned averaging procedure is taken
into account by evaluating the the RMS deviation be-
tween FP peaks identifiable on individual data sets ver-
sus those located on the averaged dataset.

Then selected Lamb peaks are fit to Lorentzians with
linear terms, just as before. An example is shown in Fig-
ure 8. Again, peak distances are averaged over multiple
spectra. Note, however, that, in this case, the averaging

Isotope ∆fobs σstat σsys ∆fcalc
87Rb 6707 4 74 6623
85Rb 2969 9 5 2961

TABLE IV: Averaged observed peak separations and
their calculated values. All quatities in MHz.

Isotope State A σstat σsys ANIST
87Rb 5P3/2 3461 2 61 3417
85Rb 5P3/2 1015 2.9 8.6 1012

TABLE V: The observed and the previously accepted
values for the hyperfine couplies in the 5P3/2 states of

both Rubidium isotopes.

does not reduce the systemic frequency uncertainty of
the non-linear sweep, because all spectra being averaged
were taken at the same postion on a sweep. So the fre-
quency uncertainties here were not treated statistically:
upon averaging the interpeak distances, the systematic
uncertainties are simply averaged as well. (Of course,
the actual statistical uncertainties from fitting are com-
bined statistically). See Table IV.

Finally, we compute the couplings. The B coupling is
irrelevant for the 5S1/2 states: the complicated coefficient
of B in (1) is easily evaluated to be identically zero. So we
take those averaged peak distances, and, combining their
values with the appropriate 5P3/2 splittings determined
earlier, we compute the A coupling for both isotopes, and
propagate the errors through. With that, we arrive at the
final table of A coefficients for the 5S1/2 states, Table V.
Values agree with NIST data [3] within uncertainty.

IV. CONCLUSIONS

We have successfully measured the hyperfine coupling
constants in the states of the D2 transition in both com-
mon isotopes of Rubidium, and found values in agree-
ment with previously accepted results to within one or
two standard deviations. Future research may test this
technique upon Zeeman splittings as well.
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