Complex Analysis

Sam Bader

December 13, 2013

Note of default notation: $z=x+i y, \quad w=u+i v$

1 Analytic Functions

A differentiable complex function of a complex variable is termed analytic (or holomorphic or regular or many other names) ${ }^{1}$

1.1 Cauchy-Riemann Equations

$w=u(x, y)+i v(x, y)$ is analytic iff

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

or, equivalently

$$
\frac{\partial w}{\partial x}=\frac{\partial w}{\partial i y}
$$

1.2 Interpretations

Geometrical: analytic functions $w(z)$ are conformal mappings from the (x, y) plane to the (u, v) plane, ie angles are locally preserved. (That is to say, infinitesmal triangles map onto similar infinitesimal triangles.)

Physical: analytic functions $w=u+i v$ correspond to a vector field $(u,-v)$ that is sourceless and irrotational. Ie. if w is analytic, \bar{w}, viewed as a vector field, is sourceless and irrotational.

1.3 Laplace Equation

It follows from the C-R equatoins that both the real and complex parts of an analytic function satisify the Laplace equation, ie

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0
$$

1.4 Closure

The set of analytic functions is closed under addition, subtraction, mulitplication, and division (excluding points of division by zero).

[^0]
2 Line Integrals

Interpretation:

$$
\int_{C} w d z=\text { work }+i \text { flux }
$$

where the vector field is \bar{w}.

2.1 Divergence theorem

$$
\oint_{C} w d z=\iint_{D} \operatorname{div} \bar{w} \cdot d x d y+i \iint_{D} \operatorname{curl} \bar{w} \cdot d x d y
$$

2.2 Cauchy Theorem

If C bounds a connected region in which w is analytic,

$$
\oint_{C} w d z=0
$$

2.3 Important example: $1 / z$

Integrate $1 / z$ around a circle about the origin

$$
\oint_{C} d z / z
$$

2.3.1 Method 1

For a circle

$$
d z=i z d \theta
$$

So

$$
\oint_{C} d z / z=2 \pi i
$$

2.3.2 Method 2

In a simply-connected domain, one may use the indefinite integral. We have a discontinuity at $z=0$, but we can form a simply connected domain by cutting the non-negative real axis. Then we evaluate

$$
=\log b-\log a
$$

Where this is (arbitrarily) the principal branch of the \log function, taken as a goes to 1 and b goes to $e^{2 \pi i}$

$$
=2 \pi i
$$

3 Cauchy Integral Formula

3.1 For $f(z)$

If C is inside a simply-connected domain wherein $f(z)$ is analytic, than for any point z inside C,

$$
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(t) d t}{t-z}
$$

Thus $f(z)$ inside the domain is fully determined by the values of f on the boundary. This is also a nice trick for evaluating line integrals around nonanalytic points.

3.2 For higher derivatives

Furthermore,

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(t) d t}{(t-z)^{n+1}}
$$

Analytic functions, we see, have all orders of derivatives well-defined.

3.3 Taylor's Theorem

If $f(z)$ is analytic within a disk of radius R about z_{0}, Taylor's theorem applies within that disk:

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}
$$

We could write this as

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(t) d t}{\left(t-z_{0}\right)^{n+1}}
$$

3.4 Laurent's Theorem

If $f(z)$ is analytic within an annulus the same can be done, but negative powers must also be included in the sum:

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(t) d t}{\left(t-z_{0}\right)^{n+1}}
$$

3.4.1 Singularities and the Residue Theorem

Suppose the $f(z)$ is analytic within some entire domain except possibly at $z=$ z_{0}. Then the negative-exponent, or principal, part of the Laurent series describes the nature of the singularity at the $z=z_{0}$.

1. If all principal terms are zero, then the singularity is removable.
2. If all principal terms after $n=-k$ are zero, but not $n=-k$ itself, we have a pole of order k. (ie $z^{k} f(z)$ would be analytic, or, at worst, would have a removable discontinuity.)
3. If there are an infinite number of non-zero principal terms, we have an essential singularity.

As far as the line integral around the singularity is concerned, only the $n=-1$ term, known as the residue, contributes:

$$
\oint_{C} f(z) d z=2 \pi i \cdot a_{-1}
$$

Moreover, if a curve encloses some finite number of singularities in an otherwise analytic domain, then the line integral around the curve is

$$
\oint_{C} f(z) d z=2 \pi i \sum \text { residues }
$$

This is the Residue Theorem. A common application is to the evaluation of (real) line integrals by taking them as complex line integrals about a semicircle (running along the real axis and curving back at great distance) when the function falls off fast enough at z of large modulus.

3.5 Computation of Residues

1. Removable singularities: residue is zero.
2. First-order poles: the residue at $z=z_{0}$ is given by

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

3. Poles of order k : the residue at $z=z_{0}$ is given by

$$
\frac{1}{(k-1)!} \lim _{z \rightarrow z_{0}} \frac{\mathrm{~d}^{k-1}}{\mathrm{~d} z^{k-1}}\left[\left(z-z_{0}\right)^{k} f(z)\right]
$$

In practice, there's generally an easier means, ie for rational functions, one may just recenter the function about the point of interest (that is, rewrite in terms of $t=z-z_{0}$), Taylor expand the other factors about small t, and read off the coefficient of $1 / t$.
4. Essential singularities: my best wishes to you

[^0]: ${ }^{1} \mathrm{~A}$ function $w(z)$ can be said to be analytic at infinity if $w(1 / z)$ is analytic near $z=0$.

