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Note of default notation: z = x+ iy, w = u+ iv

1 Analytic Functions

A differentiable complex function of a complex variable is termed analytic (or
holomorphic or regular or many other names).1

1.1 Cauchy-Riemann Equations

w = u(x, y) + iv(x, y) is analytic iff

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

or, equivalently
∂w

∂x
=
∂w

∂iy

1.2 Interpretations

Geometrical: analytic functions w(z) are conformal mappings from the (x, y)
plane to the (u, v) plane, ie angles are locally preserved. (That is to say, in-
finitesmal triangles map onto similar infinitesimal triangles.)

Physical: analytic functions w = u+ iv correspond to a vector field (u,−v)
that is sourceless and irrotational. Ie. if w is analytic, w̄, viewed as a vector
field, is sourceless and irrotational.

1.3 Laplace Equation

It follows from the C-R equatoins that both the real and complex parts of an
analytic function satisify the Laplace equation, ie

∂2u

∂x2
+
∂2u

∂y2
= 0,

∂2v

∂x2
+
∂2v

∂y2
= 0

1.4 Closure

The set of analytic functions is closed under addition, subtraction, mulitplica-
tion, and division (excluding points of division by zero).

1A function w(z) can be said to be analytic at infinity if w(1/z) is analytic near z = 0.
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2 Line Integrals

Interpretation: ∫
C

wdz = work + i flux

where the vector field is w̄.

2.1 Divergence theorem∮
C

wdz =

∫∫
D

div w̄ · dxdy + i

∫∫
D

curl w̄ · dxdy

2.2 Cauchy Theorem

If C bounds a connected region in which w is analytic,∮
C

wdz = 0

2.3 Important example: 1/z

Integrate 1/z around a circle about the origin∮
C

dz/z

2.3.1 Method 1

For a circle

dz = izdθ

So ∮
C

dz/z = 2πi

2.3.2 Method 2

In a simply-connected domain, one may use the indefinite integral. We have a
discontinuity at z = 0, but we can form a simply connected domain by cutting
the non-negative real axis. Then we evaluate

= log b− log a

Where this is (arbitrarily) the principal branch of the log function, taken as a
goes to 1 and b goes to e2πi

= 2πi
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3 Cauchy Integral Formula

3.1 For f(z)

If C is inside a simply-connected domain wherein f(z) is analytic, than for any
point z inside C,

f(z) =
1

2πi

∮
C

f(t)dt

t− z

Thus f(z) inside the domain is fully determined by the values of f on the
boundary. This is also a nice trick for evaluating line integrals around non-
analytic points.

3.2 For higher derivatives

Furthermore,

f (n)(z) =
n!

2πi

∮
C

f(t)dt

(t− z)n+1

Analytic functions, we see, have all orders of derivatives well-defined.

3.3 Taylor’s Theorem

If f(z) is analytic within a disk of radius R about z0, Taylor’s theorem applies
within that disk:

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n

We could write this as

f(z) =

∞∑
n=0

an(z − z0)n, an =
1

2πi

∮
C

f(t)dt

(t− z0)n+1

3.4 Laurent’s Theorem

If f(z) is analytic within an annulus the same can be done, but negative powers
must also be included in the sum:

f(z) =

∞∑
n=−∞

an(z − z0)n, an =
1

2πi

∮
C

f(t)dt

(t− z0)n+1

3.4.1 Singularities and the Residue Theorem

Suppose the f(z) is analytic within some entire domain except possibly at z =
z0. Then the negative-exponent, or principal, part of the Laurent series describes
the nature of the singularity at the z = z0.

1. If all principal terms are zero, then the singularity is removable.

2. If all principal terms after n = −k are zero, but not n = −k itself, we
have a pole of order k. (ie zkf(z) would be analytic, or, at worst, would
have a removable discontinuity.)
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3. If there are an infinite number of non-zero principal terms, we have an
essential singularity.

As far as the line integral around the singularity is concerned, only the
n = −1 term, known as the residue, contributes:∮

C

f(z)dz = 2πi · a−1

Moreover, if a curve encloses some finite number of singularities in an oth-
erwise analytic domain, then the line integral around the curve is∮

C

f(z)dz = 2πi
∑

residues

This is the Residue Theorem. A common application is to the evaluation of
(real) line integrals by taking them as complex line integrals about a semicir-
cle (running along the real axis and curving back at great distance) when the
function falls off fast enough at z of large modulus.

3.5 Computation of Residues

1. Removable singularities: residue is zero.

2. First-order poles: the residue at z = z0 is given by

lim
z→z0

(z − z0)f(z)

3. Poles of order k: the residue at z = z0 is given by

1

(k − 1)!
lim
z→z0

dk−1

dzk−1
[(z − z0)kf(z)]

In practice, there’s generally an easier means, ie for rational functions, one
may just recenter the function about the point of interest (that is, rewrite
in terms of t = z−z0), Taylor expand the other factors about small t, and
read off the coefficient of 1/t.

4. Essential singularities: my best wishes to you.
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